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We demonstrate both numerically and experimentally that geometric frustration in two-dimensional
periodic acoustic networks consisting of arrays of narrow air channels can be harnessed to form band gaps
(ranges of frequency in which the waves cannot propagate in any direction through the system). While
resonant standing wave modes and interferences are ubiquitous in all the analyzed network geometries, we
show that they give rise to band gaps only in the geometrically frustrated ones (i.e., those comprising of
triangles and pentagons). Our results not only reveal a new mechanism based on geometric frustration to
suppress the propagation of pressure waves in specific frequency ranges but also open avenues for the
design of a new generation of smart systems that control and manipulate sound and vibrations.
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Geometric frustration arises when interactions between
the degrees of freedom in a lattice are incompatible with the
underlying geometry [1,2]. This phenomenon plays an
important role in many natural and synthetic systems,
including water ice [3], spin ice [4-6], colloids [7-9],
liquid crystals [10], and proteins [11,12]. Surprisingly,
despite the fact that geometric frustration is scale-free, it
has been primarily studied at the microscale [2], and only
very recently has the rich behavior of macroscopic frus-
trated systems been explored [13,14]. Here, we investigate
both numerically and experimentally the effect of geo-
metric frustration on the propagation of sound waves in 2D
macroscopic acoustic networks.

We focus on periodic arrays of narrow air channels of
length L and note that a propagating mode with wavelength
A = 2L [see Fig. 1(a)] can be perfectly accommodated by a
rhombic lattice, independent of the angle 8 between the
channels [see Figs. 1(b) and 1(c) for 6 = n/2—the well-
known square lattice—and 6 = z/3, respectively].
However, when we form a triangular lattice by adding
an additional channel to a rhombic network with 6 = /3,
such a mode is no longer supported [see Fig. 1(d)], and the
system becomes frustrated. This leads us to investigate the
following question: How does geometric frustration affect
the dynamic response of a periodic acoustic network?

Our combined numerical and experimental results dem-
onstrate that, while a rhombic network transmits acoustic
waves of any frequency, a triangular network shows full
Bragg-type sonic band gaps. While sonic Bragg-type band
gaps have been previously demonstrated in ordered arrays
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of solid inclusions in air [15-19], the necessary conditions
for destructive interferences leading to their opening are
usually unknown in 2D systems, and their prediction
always required detailed numerical simulations. Nonlocal
homogenization theories, e.g., [20], could, in principle, be
used to calculate the band gaps, but they would require
numerical calculations of a similar level of complexity.
Here, we identify a new strategy based on geometric
frustration to form full Bragg-type band gaps at the desired

FIG. 1. Geometric frustration in acoustic networks: (a) A
propagating mode with a wavelength twice that of a single
channel length (i.e., A =2L) can be supported by a rhombic
network with (b) @ =z/2 and (c) 8 = /3 but cannot be
supported by (d) the triangular network, causing the system to
become frustrated.
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frequencies. Remarkably, we derive robust and simple rules
to exactly predict the location of the band gaps solely as a
function of the arrangement of the propagating media. This
provides a powerful tool for the design of systems capable
of precisely controlling the propagation of sound.

In order to analyze the effect of geometric frustration on
the propagation of sound waves, we first calculate the
dispersion relations for periodic acoustic networks com-
posed of narrow air channels of length L and cross-
sectional width D, with D <« L. Assuming that in any
channel 1 > 2D and the viscous and thermal boundary
layer thicknesses are small compared to D, we used the 1D
wave equation [21] to describe the free vibrations of the
enclosed air column. Furthermore, we determine the
dispersion relations of a periodic network both analytically
[22] and numerically (more details on the analysis are
provided in Supplemental Material [23], and the finite
element (FE) code implemented in MATLAB is available
online [24]).

In Fig. 2, we show the acoustic dispersion curves for the
square and triangular networks in terms of the normalized
frequency Q = wL/(27nc) = L/A, where w denotes the
angular frequency of the propagating pressure wave and
¢ = 343.2 m/s is the speed of sound in air. Both analytical

N

-
[¢)]

o
&

Normalized Frequency, Q

o

G X M

@
x
<

TAVANZ VAN
XA/

1

1

1

[}

1 _5 ©000000000PO0OO0O0O0O000PLPO0O0O0O00000
1 1

Normalized Frequency, Q

Reduced Wave Vector, k

FIG. 2. Dispersion relations of acoustic networks comprising a
periodic array of air channels: (a) square lattice and (b) triangular
lattice. Continuous lines and circular markers correspond to
analytical and numerical (finite element) results, respectively.
The shaded regions in (b) highlight the full band gaps induced
by geometric frustration. Lattice configurations, unit cells
(highlighted in red), and irreducible Brillouin zones are shown
on the left.

(continuous lines) and numerical (circular markers) results
are reported and show perfect agreement. First, we note that
both band structures are periodic in Q and are characterized
by equally spaced flat bands located at Q = n/2 (n being
an integer, n = 1,2, 3, ...). This is a clear signature of the
expected resonant modes with wavelengths 1, = 2L/n
localized in the individual air channels. These modes
(which are not captured by our analytical model, as we
considered only propagating waves in the calculations) are
characterized by zero pressure at both ends of each channel.
As such, they are geometrically compatible with both the
square and triangular networks (as well as any other
equilateral lattice geometry), since continuity conditions
at the junctions can always be satisfied.

Second, and more importantly, the dispersion curves
reported in Fig. 2 also indicate that, while the square lattice
transmits acoustic waves of any frequency, full band gaps
exist in the triangular network, as highlighted by the shaded
areas in Fig. 2(b). These band gaps open around the odd-
numbered resonant modes (i.e., n = 1,3,5,...), the first
one (i.e., n = 1) corresponding to A = 2L. Note that these
odd-numbered modes introduce a specific coupling con-
dition between the ends of each air channel: The pressure
field phasor is opposite for neighboring junctions.
Therefore, at these specific frequencies, the acoustic
triangular network behaves as the frustrated antiferromag-
netic triangle, where each spin cannot be antialigned with
all its neighbors [1,2]. More specifically, in the considered
acoustic lattice, the phasor of the pressure field plays the
role of the spin, while the opposite phasor between the two
ends of each individual channel occurring at Q = n/2
introduces conditions analogous to the antiferromagnetic
coupling. However, differently from the case of antiferro-
magnetic interactions, in our acoustic networks the cou-
pling between neighboring junctions depends on the wave
frequency, so that geometric frustration arises only at
specific values of Q [25].

We find that all lattices showing geometric frustration
under antiferromagnetic spin coupling exhibit full acoustic
band gaps in their dispersion spectrum, while those that can
accommodate such coupling and are not frustrated do not
(see Fig. S6 in Ref. [23]). Furthermore, while the results
presented in Fig. 2 are for ideal acoustic networks made of
1D channels, we have also investigated the effect of the
finite width D of the tubes. The numerical results reported
in Fig. S7 [23] for networks formed by channels with
different L /D ratios indicate that the dynamic response of
the system is not significantly affected by the finite width of
the channels. In fact, the triangular network is still
characterized by full band gaps around the odd-numbered
resonant modes even for L/D = 10.

Having demonstrated that geometric frustration can be
exploited to form band gaps in acoustic networks, we now
shed light on the mechanism leading to their opening. To
this extent, we consider a rhombic lattice with € = z/3 and
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L/D = 100 and analyze numerically the effect of a channel
of width d added along its short diagonal (see the
schematics in Fig. 3). In Fig. 3, we report the dispersion
curves along the GM direction for different values of d/D
ranging from O (rthombic lattice) to 1 (triangular lattice).
Our results reveal that, as soon as the coupling induced by
the additional channel of width d < D is present, a band
gap opens at point M. Moreover, as d/D increases, the
width of the band gap monotonically raises and approaches
that of the triangular lattice. Mode shapes at the cutoff
frequency are represented in Fig. 3 for d/D = 0.0 (rhombic
network), d/D = 0.2, and d/D = 1.0 (triangular network).
They indicate that the additional diagonal channel com-
pletely changes the pressure distribution, as that of the
rhombic lattice (d/D = 0) is no further compatible with the
underlying geometry when the diagonal channel is added.
The coupling introduced by the additional channel results
in new interferences (coupling) that modify the mode
shapes and frequencies of the periodic networks and
eventually lead to the opening of full band gaps.

The results shown in Fig. 3 indicate that the band gaps
are of the Bragg type, as they can be interpreted as the result
of the destructive interferences of waves propagating in the
individual channels and scattered at each junction of the
lattice with a specific amplitude and phase [26,27]. An
analysis of the dispersion curves also reveals that inside the
band gap Re(k) = 7 and Im(k) is rounded and symmetric
[see Fig. S5(b) of Ref. [23]], two features that are consistent
with Bragg band gaps. As a consequence, and also due to
the fact that there is no local resonances in the studied
lattices, the band gaps are not due to hybridization or to the
coupling of local resonators (a coupling such as tunneling
or analogous to the tight binding in crystals) [28,29].
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FIG. 3. Dynamic response of a rhombic lattice with an addi-
tional channel of width d along the short diagonal. Dispersion
curves along the GM direction are plotted for different values of
channel width ratios d/D. Mode shapes at the M point are shown
for three unit cells characterized by d/D = 0 (thombic lattice),
d/D =0.2, and d/D =1 (triangular lattice). Note that for
visualization purposes the channel width D is increased to
L/D = 20 (while in the calculations we used L/D = 100).

Finally, we characterize both numerically and experi-
mentally the dynamic response of acoustic networks of a
finite size. We start by conducting a numerical steady-state
analysis to calculate the transmission through finite-size
networks comprising 6 X 6 unit cells made of 2D channels
with L/D = 20, in accordance with the tested sample
configurations. In these simulations, a harmonic input
pressure p™ is applied at the end of the central channel
on the left edge of the model. In Fig. 4, we report the
steady-state pressure fields obtained for the square and
triangular networks at Q = 0.45 (in the gap induced
by geometric frustration in the triangular network) and
Q = 0.95 (in the vicinity of the second resonant frequency
of a single channel). The results show that in the triangular
network at Q = 0.45 the acoustic energy is completely
localized near the excitation site and no signal is trans-
mitted to the opposite end of the lattice [Fig. 4(c)]—a clear
indication of a full band gap. On the other hand, in all other
cases the acoustic waves are found to propagate across the
finite networks, even in the presence of partial band gaps
[Figs. 4(a), 4(b), and 4(d)].

To validate these predictions, we fabricated samples of
the square and triangular acoustic networks comprising
6 x 6 unit cells [Figs. 5(a) and 5(b)]. The individual air
channels have length L =40 mm and a square cross
section of 2x2 mm (so that L/D =20 and Q = 0.5
corresponds to a frequency of 4 kHz) and were engraved
into an acrylic plate of thickness 8 mm by milling with
computerized numerical control. A flat acrylic plate was
then glued on the top of the etched plate to cover the air
channels. During all the experiments, the sample was
surrounded with sound-absorbing foams to minimize the
effect of the ambient noise and the room reverberation.
Moreover, an open channel on one of the edges of the
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FIG. 4. Pressure field distribution in finite-sized acoustic
networks comprising 6 x 6 unit cells: (a) square lattice at
Q = 0.45, (b) square lattice at Q = 0.95, (c) triangular lattice
at Q=045 and (d) triangular Ilattice at Q = 0.95.
The color indicates the pressure amplitude normalized by the
input signal amplitude (p™).
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FIG. 5. Transmittance of finite-sized networks: fabricated
samples with the (a) square and (b) triangular networks. The
input chamber is connected to the left edge of the samples, while
the microphone to measure the amplitude of the transmitted
sound waves is attached to the right edge. The frequency-
dependent transmittances for the samples are shown in (c) and
(d) for the square and triangular network, respectively. Both
experimental (continuous red line) and numerical (dashed blue
line) results are shown. The gray regions in (d) highlight the full
band gap as predicted for the corresponding infinite structure [see
Fig. 2(b)].

samples was connected to an input chamber containing an
earphone (352C22, PCB Piezotronics) to excite a broad-
band white noise signal between 1 and 8 kHz and a
microphone to measure the amplitude of the generated
sound waves p™. Another microphone was then placed at
an air channel opening on the opposite side of the sample to
detect the transmitted signal p°", and the acoustic trans-
mittance is calculated as the ratio p°'!/ p™™. Note that, since
the tested samples are of a finite size and the source excites
a single channel, the waves are generated in several
directions and then scattered in many others. As such,
in our experiments we test not only x-direction trans-
mission but multiple-direction transmission. This is con-
firmed by the fact that directional band gaps in the x
direction do not lead to a drop in the experimental trans-
mittance spectrum.

The continuous red lines in Figs. 5(c) and 5(d) show the
experimentally measured transmittance for the square and
triangular samples, respectively, while the blue dashed lines
correspond to the transmittance as predicted by steady-state
FE simulations. The latter are carried out on 2D models
with the exact geometries of the samples and with absorb-
ing conditions at the sample edges. However, we found that
transmittance gaps and their positions are robust features
and are not affected by either the boundary condition type
or the macroscopic shape of the samples. First, we note that

the transmittance for the square lattice does not show
regions of significant attenuation and fluctuates around
—30 dB for experimental data and around —20 dB for
numerical results. Such a low baseline value can be mainly
attributed to the radiation of acoustic energy through the
channel openings on the edges, while the 10 dB difference
between experimental and numerical results can be attrib-
uted to the dissipation in the viscous and thermal boundary
layers [30,31], an effect which is more pronounced at the
low frequencies and is not accounted for in the FE
simulations. In contrast, for the triangular network, a
significant drop (up to ~— 60 dB) in the transmittance
is observed between 2.5 and 6 kHz (i.e., for Q between 0.3
and 0.7), confirming the existence of the full band gap
induced by geometric frustration. Note that our experi-
ments also capture the narrow transmission band at
Q = 0.5, which is predicted by the dispersion relations
for a triangular lattice with L/D = 20 (see Fig. S7 of
Ref. [23]).

In summary, we demonstrated both numerically and
experimentally that geometric frustration in networks of
channels can be exploited to control the propagation of
sound waves. Particularly, we found that in acoustic net-
works comprising frustrated units (such as triangles and
pentagons) full Bragg-type band gaps emerge in the
vicinity of the odd-numbered resonant frequencies of the
individual channels, as these introduce conditions analo-
gous to the antiferromagnetic coupling in spin lattices.
Therefore, our study points to an effective and powerful
rule to construct acoustic structures whose band gaps can
be predicted a priori, purely based on the arrangement of
the channels in the network. While the necessary conditions
for destructive interferences leading to the opening of a full
Bragg band gap are usually unknown in 2D systems, we
found that geometric frustration results in gaps at specific
and predictable frequencies, which depends only on the
length of the tubes.

Given the broad range of applications recently demon-
strated for systems with acoustic band gaps, including wave
guiding [32,33], frequency modulation [34,35], noise
reduction [36], and acoustic imaging [37-39], we expect
geometrically frustrated acoustic networks to play an
important role in the design of the next generation of
materials and devices that control the propagation of
sound. These systems could be made more compact by
coiling up space [40]. Furthermore, exotic functionalities
could be achieved with more elaborate designs which
incorporate local resonators, additional coupling channels,
and fractal structures. For instance, our strategy could
provide a tool for the design of acoustic media with an
effective zero index [41,42] or topologically protected edge
modes [43,44].
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ANALYTICAL CALCULATION OF DISPERSION RELATIONS FOR PERIODIC ACOUSTIC
NETWORKS

To analytically obtain the dispersion relations for periodic acoustic networks composed of identical narrow air
channels of length L that support only a planar mode, we start by focusing on an individual tube (see Fig. S4(a)).
Using transmission line theory [1, 2], it is possible to express the acoustic particle velocity ug at one end of the channel
(x = 0) as a function of the pressures pg, pr, at both ends (z = 0 and L) of the channel as,

uo = Ypo+Y'pr, (S1)
where

Y = -~ cot(kL), and Y’ = —sin~'(kL). (S2)
Z, Z,
Here, Z. = poco/D is the characteristic impedance of the air channel, pg is the air density, ¢y = 343 m/s is the
acoustic wave velocity, L is the channel length, D is the channel width, k = w/¢g is the wavenumber, w is the cyclic
frequency, and ¢+ = \/—1 (time convention e*?).
The response of the network of channels can then be constructed by enforcing acoustic particle velocity flow
conservation at each junctions where N tubes with the same width D are connected (see Fig. S4(b)),

zN:ui =0. (83)

Substitution of Eq. (S1) into Eq. (S3) yields
N
(Yp+Y'p:) =0, (S4)

=1

where p is the pressure at the considered junction and p; the pressure at the other end of the i-th tube connected to
this junction. Since all the tubes are identical (i.e. of the same length L and same width D) and —Y/Y” = cos(kL),
Eq. (S4) can be rewritten as

N
Npcos(27Q) — Zpi =0, (S5)

i=1

where Q = kL/(27) is the normalized frequency.

Eq. (S5) fully describes the behavior of a junction as it provides the local pressure p as a function of the pressures
p; at the surrounding junctions for a given frequency. Therefore, it forms the basis to obtain the dispersion relations
for a network of channels.
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FIG. S1: (a) Definition of the field quantities in a portion of tube of length L. (b) Definition of the field quantities at a junction.
The u; are the outgoing acoustic particle velocities for each branch ¢, and p; are the pressures at the end of branches 3.

Dispersion relation for the square lattice (N = 4)

For a square lattice we have N = 4, so that Eq. (S5) becomes

4
4pcos(2mQ) — Zpi = 0. (56)
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FIG. S2: Geometrical configuration of the square lattice and Brillouin zone definition.
Focusing on the junction labelled with the indexes (m,n) in Fig. S2, Eq.(S6) can be rewritten as,
4p(m,n) 005(277-9) — P(m,n—1) — P(m,n+1) — P(m—1,n) — P(m+1,n) = 0. (87)

Assuming periodicity and a solution in the form of a propagating wave e~**+®="%4¥ with k, and k, the coordinates
of the wave vector k, we find

4eos(2mQ) — eFvl — g7l _ gkl _ ikl — (S8)
which can be rewritten compactly as

4 cos(2mQ2) — 2 cos(ky L) — 2 cos(k, L) = 0. (S9)



Eq. (89) is referred to as the dispersion equation of the square lattice and is solved for wave vectors k = [k;, k]
within the first Brillouin zone to obtain its band structure. More specifically, for the square acoustic network we solve
the dispersion equation on the perimeter of the GMX contour shown in Fig. S2.

We start by noting that for the GX branch of the Brillouin zone, there is propagation only along the z-axis, so that
ky, = 0. Therefore, Eq. (S89) simplifies to

4cos(2mQ) — 2cos(kSXL) =0, (S10)
which can be easily solved to obtain the dispersion relation between the wavenumber kX and the frequency €,
1
ECX = I arccos(cos(278) — 1), (S11)

or inverted as,

arccos|(cos(k¢X L) +1)/2]

Q= o : kX e [0,7/L). (S12)
For the GM branch k, = k, so that Eq. (S9) yields
kM = arccos(cos(2nQ))/L = 279/ L, (S13)
which can be inverted to obtain the dispersion relation between frequency € and the wavenumber k&M
Q= kML /2m, kM ¢ [0, 7/ L]. (S14)
Finally, for the XM branch k, = 7, so that Eq. (S9) yields
EXM L = arccos(2 cos(27Q) + 1), (S15)

which can be inverted to obtain the dispersion relation between frequency € and the wavenumber k&M

arccos|cos(kXM L) —1)/2)]
27 '

0= (S16)

Note that each k(2) relation found above contains the term cos(27§2), so for any k there is an infinite number of
modes at Q2,1 —Q, 14+ Q, 2—-Q, 2+ Q ..., the dispersion relations are periodic in €. Note also that at the G, X,
and M points, analytic formulas for the mode frequencies, cut-off frequencies, are straightforward. Finally, it is also
worth mentioning that the imaginary part of the wavenumbers can be obtained from the dispersion relation, and it
is especially relevant in the band-gaps where the modes are evanescent. The analytical dispersion relations obtained
above are plotted in Fig. S3.
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FIG. S3: Dispersion curves of the square network obtained from the analytical expressions (S12), (S14), (S16). (a) Normalized
frequency as a function of Real(k), (b) Normalized frequency as a function of Imag(k).



Dispersion relation for the triangular acoustic network (N = 6)

=13

FIG. S4: Geometrical configuration of the triangular lattice and Brillouin zone definition.

For the triangular acoustic network we have N = 6, so that Eq. (S5) becomes

6
6p cos(2m82) — Zpi =0. (S17)

i=1
Focusing on the junction labelled with the indexes (m,n) in Fig. S4, Eq.(S17) can be rewritten as
6p COS(27TQ) — P(m,n+2) — P(m+1,n+1) — P(m+1,n-1) — P(m,n—2) — P(m—1,n—1) — P(m—1,n+1) = 0. (818)

Assuming periodicity and a solution in the form of a propagating wave e~ ***===kyy with k, and ky the coordinates
of the wave vector k, a = L/2, b = L+/3/2, we obtain,

6COS(27TQ) _ e—2zakaD o e2mk$ _ ezakm—zbky _ e—zakw+1bky _ e—zakw—ibk,y _ eiakm+zbky — 0’ (819)
which can be simplified into,
6 cos(2mQY) — 2 cos(2ak,) — 4 cos(aky) cos(bky) = 0. (S20)

To construct the dispersion diagram for the triangular acoustic network we solve the dispersion equation Eq. (S20)
on the GKM contour shown in Fig. S5. For the GM branch, we have k, = 0 and k™ = bk, € [0,7]. Therefore,
Eq. (S20) simplifies into,

ESM = arccos(3 cos(2mQ)/2 — 1/2), (S21)
which can be inverted, yielding
Q= % arccos[2 cos(kgar) /3 + 1/3]. (S22)
For the GK branch, we have k, = 3k, = kX € [0, 7] and Eq. (S20) simplifies into,
0= % arccos(2 cos(2kS% /3) /3 4 cos(4kSK /3)/3]. (S23)

Finally, for the KM branch we have k, = 27/v/3 and k, = kK € [0,7/3] and Eq. (S20) simplifies into,
1
0= by arccos|cos(2k5M) /3 — 2 cos(kKM) /3]. (S24)
7r

In point K (27/3,27/+/3), the band gap is of the smallest width, so it is interesting to obtain the associated
frequency which determines the width of the complete band gap. For this, Eq. (S26) can be taken at k“¥ = 7, and
it gives,

O = % arccos|2 cos(2m/3)/3 + cos(4m/3) /3], (S25)
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The width of the band gap is consequently 1 — Qx — Qx = 1/3.
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FIG. S5: Dispersion curves of the triangular network obtained from the analytical expressions (522), (526), (S24). (a) Normal-
ized frequency as a function of Real(k), (b) Normalized frequency as a function of Imag(k“™)/m and Real(kSM).

NUMERICAL CALCULATION OF DISPERSION RELATIONS FOR PERIODIC ACOUSTIC
NETWORKS

Finite Element formulation

In this study we focus on acoustic networks comprising a periodic array of narrow air channels of length L and
cross-sectional width D, for which D << L. Therefore, in any individual channel the free vibrations of the enclosed
air column can be described by the 1D wave equation [1, 3]

Pp .0

92 € 92 = 0, (S27)
where p is the acoustic pressure (the local deviation from the ambient pressure), c is the speed of sound in the channel
and z € [0, L] denotes the position along the channel. Since Eq. (S27) in the general case cannot be solved analytically
for a any complex periodic network of air channels, we determine its solution numerically by using the finite element
(FE) method.

To develop the FE formulation, we start by restating Eq. (S27) in the weak form. We multiply both terms in Eq.

(S27) by an arbitrary function w(z) and integrate over the domain [0, L],

L 2 L g2
>p 2 / Fp.
/0 W dx —c ; WH dx = 0. Yw. (S28)
Using integration by parts
0%p 0 dp Ow Op
Yo = or (“’&:) " or o (529)

Eq. (S28) can be rewritten as
L 92 L L
o“p 9 0 dp Oow Op
—dx — — (w=— ) dz— ——dz| =0 v S30
/0 Yot e l/o Ox (wﬁx * o Oz dx * ’ “ (S30)
which, using the fundamental theorem of calculus, can be simplified to

boo%p 2| Op
/Owwdx—c wo

L ow op
- o 87&8%’ = 07 Vw, (831)



where I' is the boundary of the 1D channel and consists of the two end points. In the following, the portion of the
boundary where the p is prescribed is denoted by I',, while the boundary where dp/dz is prescribed is denoted by
Tsp. Note that T', UTy, =T and I'), N Ty, = 0. Next, we construct the arbitrary function w(z) so that w =0 on T,
and the pressure field so that p = p on I, yielding

Lo?p 2| Op
/Owwdx—c wa—x

To numerically solve Eq. (S32), we then construct a mesh, introduce an approximation for the scalar fields p and
w and formulate the discrete FE equations. Here, we discretize the 1D air channels into a number of line elements of
length L. and choose to approximate the fields in each line as a linear function (so that each element has two nodes
located at x§ and x§). It follows that over each element p and 9?p/dt? are approximated as

L
Ow Op
- — = = Vw with w = I 2
; (%Cax@x] 0, w with w =0 on T, (S32)

Tap

9%p°(x) 4

p°(x) = N¢(x)d®, 92 N¢(z)d®, (S33)

where d¢ and d¢ are vectors containing the nodal values of p and 9%p/dt? and
Ne(a) = L [o§ — 0~ a] (534)

is the so-called element shape function matrix. Note that the superscript e has been introduced to indicate that the
functions pertain to element e. Moreover, according to the Galerkin method, we use the same approximation also for
w’

w®(z) = N¢(z)w*. (S35)

Next, to efficiently integrate Eq. (S32), we evaluate the integral over [0, L] as a sum of integrals over individual
element domains [z§, z§],

Nel x5 92 %5 dweT dp¢ dn¢
eT 9P 2 w=" ap 2 (, eT P

d dx — — =0 S36

e A = I G I B 520

e=1

where ng; is the total number of line element used to construct the mesh. Note that in the equation above we have
taken the transpose of the arbitrary function w; this does not change the value of the expression as w is a scalar, but
it is necessary for consistency when we substitute matrix expressions for w and its derivatives.

Substitution of Egs. (S33) and (S35) into Eq. (S36) yields

el x5 .. @5 d
> wer / N Ndz d® + ¢ / B“Bdzd® — ¢? (Nerp> =0, (S37)
e=1 xy Ty * FEP
—_—————
Me Ke fe
where
ON¢© 1
peo N Loy S38
Ox Le[ x (538)

Note that in Eq. (S37) we have introduced the element matrices M° and K¢

x5 Le 21 o3 A1 -1
e __ eT'n\Je _ € e __ 2 el'pe _
M_/ITN Ndz = = {1 2], K_c/T B Bda:—Le{l 1], (S39)

e
1

and the element vector f¢

fe = ¢ (N@po> : (540)
FC



which are the essence of the FE method formulation for this problem and serve as the building block for its global
implementation.
Since the element and global nodal vectors can be related as

d° =Led, d® = Led, w® = L°w, (S41)
where L€ is the gather matrix for a given element, which gathers the nodel quantities of each element from the global
nodal vector (note that L€ is a Boolean and consists strictly of ones and zeros). Substituting Eq. (S41) into Eq. (S37)
we obtain

Nel Nel Nel
w’ (Z LTMLed + > LKL - ) LeTfe> =0. (S42)
e=1 e=1 e=1
If we now define the global matrices M and K as
Nel MNel
M =) LML, K=> LKL, (S43)
e=1 e=1
and the global vector f as
el
f=) Lfe (S44)
e=1

Eq. (S42) can be rewritten as
wT (Ma +Kd - f) ~0. (S45)
Finally, since Eq. (S45) has to be satisfied of all possible w, it follows that
Md +Kd —f =0, (S46)

which represent the FE equations for the 1D wave equation.

Frequency-domain analysis

To calculate the dispersion relation for an acoustic periodic network, we focus on its unit cell spanned by the lattice
vectors a; and ay (highlighted in red in Fig. S6). We then consider the wave motion

d = pe™t, (S47)

where p is the vector of nodal amplitudes of vibration and w is the circular frequency. Introducing Eq. (S47) into
Eq. (S46) we have

(K —w’M)p = 0, (S48)

which is a generalized eigenvalue problem. Note that here we consider a unit cell in isolation from other unit cells,
and thus the global vector f has been set to zero.

Next, we apply Bloch-type boundary conditions, so that the pressure of each pair of nodes (here denoted as A and
B) periodically located on the boundary of the unit cell is related as

ps =paexp(ik-Tap), (549)

where k is Bloch-wave vector and r 4 is the distance between the pair of nodes periodically located on the boundary.

Finally, we solve Eq. (S48) with (S49) for a number wave vectors k lying in the reciprocal space. Note that, since
the reciprocal lattice is also periodic, we can restrict the wave vectors k to a certain region of the reciprocal space
called the first Brillouin zone (indicated by the dashed polygons in Fig. S6). In addition, we may further reduce
the domain to the irreducible Brillouin zone (IBZ) (indicated by the yellow areas in Fig. S6) by taking advantage of
reflectional and rotational symmetries. Operationally, the band structures for the acoustic networks are constructed
by calculating the eigen-frequencies w(k) for k vectors on the perimeter of the IBZ and the band gaps (defined as
frequencies range in which the propagation of the waves is forbidden) are obtained by the frequency ranges within no
w(k) exist. Numerically, a discrete set of k vectors on the perimeter of the IBZ needs to be chosen for the band gap
calculations. For the simulations presented in this paper, twenty uniformly-spaced points on each edge of the IBZ are
considered.



Dispersion relations for acoustic networks

While in Fig. 2 of the main text we report the dispersion curves for square and triangular lattices, we have also
investigated the wave propagation in a number of other acoustic networks. In particular, in Fig. S6 we report the
dispersion relations for Kagome (see Fig. S6(a)), hexagonal (see Fig. S6(b)), equilateral pentagonal (see Fig. S6(c)),
mixed pentagons and rhombi (see Fig. S6(d)) and snub square (see Fig. S6(e)) configurations. Interestingly, the results
indicate that any lattice comprising triangles or pentagons is characterized by frustration induced acoustic band gaps
in the vicinity of the odd numbered resonance frequencies for the individual channels.
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FIG. S6: Dispersion curves for acoustic networks comprising a periodic array of narrow air channels: (a) Kagome, (b) hexagonal,
(c) equilateral pentagonal, (d) mixed pentagons and rhombi and (e) snub square lattices. Lattice configurations, unit cells

(highlighted in red) and Brillioun zones are shown on the left. The calculated dispersion relations are shown on the right. The
grey regions in the plots highlight the full band gaps induced by geometric frustration.



EFFECT OF THE FINITE WIDTH OF THE AIR CHANNELS

While the results presented in Fig. 2 of the main text are for ideal acoustic networks made of 1D channels, we have
also investigated the effect of the finite width ¢ of the tubes. To this end, we have performed FE simulations using
the commercial package ABAQUS/Standard and studied the dynamic response of lattices comprising 2D rectangular
channels of length L and width D meshed with 4-node bilinear acoustic elements (ABAQUS element type AC2D4).
The calculated band structures for the square and triangular networks comprising channels with different values of
L/D are reported in Figs. S7 and show that the dynamic response of the system is not significantly affected by the
finite-width of the channels especially in the lower frequencies of the spectrum. Note that the even for the highest
presented frequencies and the smallest ratio L/D = 10, only a single plane wave mode propagates in the individual
channels. Thus the one-dimensional equation (S27) is still valid for describing the wave propagation in the individual
channels. However the continuity condition at the junction Eq. (S4), derived for a wavelength much larger than
the junction size, may not be valid anymore, and the actual scattering by the junctions may deviate from the long
wavelength scattering. As a consequence, we observe in the numerical results that the flat, zero group velocity,
standing wave modes are modified into slowly propagating modes when the ratio L/D is decreased.
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FIG. S7: Effect of the finite width D of the channels: band structures for the square and triangular networks characterized by
different values of L/D. The grey regions in the plots highlight the full band gaps induced by geometric frustration.
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