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determined by the deformation mecha-
nisms of the ligaments, which buckle 
under compression at relatively low 
values of strain. 

 In elasto-plastic porous materials 
buckling of the beam-like ligaments 
results in collapse bands that progress 
at relatively constant stress, providing 
an efficient energy absorbing mecha-
nism. [ 8–12 ]  However, this deformation 
process cannot be exploited to dynami-
cally tune the macroscopic response 
of the system, since it is irreversible. 
By contrast, in periodic porous elastic 
structures, buckling of the ligaments 
may trigger dramatic homogeneous and 
reversible pattern transformations. [ 13,14 ]  
Remarkably, it has been demonstrated 
that this parallel, cooperative buckling—
a kind of “phase transition” from one to 
another microstructure—can be instru-
mental to design materials with tunable 

properties, including systems with tunable negative Pois-
son’s ratio, [ 15 ]  phononic [ 16–18 ]  and photonic [ 19 ]  switches and 
color displays. [ 20 ]  

 Most of the porous systems studied so far are dual-shaped, 
since mechanical instability is found to trigger only one dis-
tinct new buckled pattern. Although different buckling modes 
have been observed in hexagonal honeycombs under biaxial 
compression depending on the loading conditions, [ 1,9,10,21–23 ]  
the multiple pattern transformations induced by buckling have 
never been exploited to reversibly tune the properties of the 
system. 

 Here, we show that the ability to induce the formation of 
multiple ordered patterns in periodic porous elastic struc-
tures opens avenues for creating highly tunable systems. 
First, we develop a robust framework to identify periodic 
distributions of circular holes for which buckling and the 
direction of the applied loading can be exploited to form 
multiple folding patterns. Then, we confi rm our fi ndings 
through a combination of numerical simulations and experi-
ments. Finally, we demonstrate numerically and experi-
mentally that structures with multiple folding mechanisms 
open avenues for the design of highly tunable phononic 
crystals, whose response is effectively controlled by both 
the direction of loading and the magnitude of the applied 
deformation.  
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 Mechanical instabilities in periodic porous elastic structures may lead 
to the formation of homogeneous patterns, opening avenues for a wide 
range of applications that are related to the geometry of the system. This 
study focuses on an elastomeric porous structure comprising a trian-
gular array of circular holes, and shows that by controlling the loading 
direction, multiple pattern transformations can be induced by buckling. 
Interestingly, these different pattern transformations can be exploited 
to design materials with highly tunable properties. In particular, these 
results indicate that they can be effectively used to tune the propaga-
tion of elastic waves in phononic crystals, enhancing the tunability of the 
dynamic response of the system. Using a combination of fi nite element 
simulations and experiments, a proof-of-concept of the novel material is 
demonstrated. Since the proposed mechanism is induced by elastic insta-
bility, it is reversible, repeatable, and scale-independent, opening avenues 
for the design of highly tunable materials and devices over a wide range of 
length scales. 

  1.    Introduction 

 Porous materials with well-defi ned periodicity are ubiqui-
tous not only in nature, but also in synthetic structures and 
devices. [ 1 ]  Periodic porous materials offer novel and unique 
properties, including light weight, [ 2 ]  high energy absorp-
tion, [ 3 ]  and the ability to control the propagation of both 
electromagnetic [ 4 ]  and elastic waves [ 5,6 ]  and heat fl ow. [ 7 ]  The 
properties and functionality of such materials are generally 
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  2.    Design of Soft Periodic Structures with Multiple 
Folding Mechanisms 

  2.1.    Periodic Networks of Rigid Polygons 

 To identify periodic porous elastic structures with multiple 
folding mechanisms, we start by investigating the fl exibility 
of periodic planar networks built from rigid corner-connected 
polygons, which can rotate freely. While a network of connected 
squares has a single folding mechanism (see Supporting Infor-
mation), it has been recently shown that in planar networks built 
from equilateral triangles the number of folding mechanisms 
grows with the size of unit cell. [ 24 ]  Here, we focus on the simplest 
of such tilings made of triangles – the kagome lattice. In this 
rigid network, the triangles are corner-connected to form hex-
agonal holes in the undeformed confi guration and the smallest 
unit cell consists of only two triangles (see  Figure    1  -top).  

 If we consider a single unit cell (i.e. two corner-connected 
triangles) as a building block, it is easy to see that the periodic 
network has only one folding mechanism, in which all hexag-
onal holes progressively reduce to 3-point star-like shapes (see 
Figure  1 a and Supporting Information). However, if we focus 
on a representative volume element (RVE) comprising an array 
of 1 × 2 unit cells (i.e. four corner-connected triangles) another 
folding mechanism emerges, resulting in a pattern of sheared 
voids where the shear direction alternates back and forth from 
row to row (see Figure  1 b and Supporting Information). Finally, 
for a RVE consisting of 8 triangles, three other mechanisms are 
found: one consisting of alternating rows of sheared and 3-point 
star-like voids (see Figure  1 c); another characterized by alter-
nating rows of elongated holes oriented in horizontal and vertical 
direction and at ±30° with respect to the vertical direction (see 
Figure  1 d); and a chiral pattern comprising six highly deformed 
voids surrounding an undeformed one (see Figure  1 e). 

 Additional folding mechanisms can then be identifi ed by 
considering larger RVEs (see Supporting Information). How-
ever, all these mechanisms share the same basic elements 
found in the patterns shown in Figure  1 . We also note that in 
all the identifi ed folding mechanisms the triangles are found 
either to rotate by ±α (i.e. by the same amount either in clock-
wise or anti-clockwise direction, see magenta and cyan trian-
gles in Figure  1 ) or not to rotate at all (i.e. α = 0, see yellow 
triangles in Figure  1 ), facilitating the construction of folding 
mechanisms for large RVEs. 

 Finally, given the fi nite size of the elastomeric samples con-
sidered in this study, it is worth pointing out that we expect 
only the basic folding mechanisms shown in Figure  1  to be 
triggered during loading.  

  2.2.    From Networks of Rigid Polygons to Continuum Porous 
Structures 

 Having found a planar network built from rigid corner con-
nected triangles with multiple folding mechanisms, we then 
identify the corresponding porous structure. This can be easily 
done by replacing all the hexagonal voids with circular ones, [ 25 ]  
as shown in  Figure    2  . It is interesting to see that the outcome 
of this simple process is a porous structure comprising a peri-
odic array of circular holes on a triangular lattice. In this con-
tinuum structure all the hinges of the original kagome network 
are replaced by thin ligaments and we expect these ligaments to 
buckle during loading.  

 Although the stability under biaxial compression of similar 
structures such as hexagonal honeycombs has been previously 
studied, [ 1,9,10,21–23 ]  the ability to induce multiple pattern trans-
formations has never been exploited to design materials and 
devices with enhanced tunability. In the next sections we inves-
tigate both numerically and experimentally how loading paths 
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 Figure 1.    Schematic of the basic folding mechanisms in a rigid kagome network. The basic unit cell for each folding mechanism is outlined in black. 
The color of the triangles corresponds to their rotation. a) Mode with a basic cell of size 1 × 1; b) Mode with a basic cell of size 2 × 1; c) Mode with a 
basic cell of size 4 × 1; d) Mode with a basic cell of size 2 × 2; e) Mode with a basic cell of size 2 × 2.

 Figure 2.    From a rigid networks of triangles to its corresponding con-
tinuum structure. All the hinges of the original kagome network (dashed 
black line) are replaced by thin ligaments in the continuum structure 
(shaded in green). The dotted red line indicates the unit cell of the 
structure.
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with different angles can be exploited to trigger the different 
folding mechanisms shown in Figure  1 , enabling the design of 
materials with highly tunable responses.   

  3.    Mechanics of Soft Periodic Structures with 
Multiple Folding Mechanisms 

  3.1.    Numerical Analysis 

 We continue by performing fi nite element (FE) simulations 
to investigate the patterns induced by buckling in a triangular 
array of circular holes in an elastomeric matrix. We focus on 
a structure characterized by an initial porosity 0Ψ  = 70% and 
assume plane strain conditions. The nonlinear fi nite-element 
code ABAQUS/STANDARD is used to deform the structures 
as well as to investigate its stability. For all the analyses, 2D 
fi nite element models are constructed using triangular quad-
ratic elements (element type CPE6H in ABAQUS) and the 
accuracy of the mesh is ascertained through a mesh refi nement 
study. Moreover, the response of the silicone rubber used in the 
experiments to cast the samples is captured using the incom-
pressible Neo-Hookean hyperelastic model [ 26 ]  with initial shear 
modulus 0μ . 

 Since the fi nite-sized specimens are necessarily infl uenced 
by boundary conditions at the edges, we focus on the response 
of the corresponding infi nite periodic structure and study the 
response of rectangular RVEs by applying periodic boundary 
conditions. [ 27,28 ]  We investigate the response of the porous 
structure under biaxial loading so that the macroscopic defor-
mation gradient  F  is given by

 (1 ) (1 ) ,xx yyFF ee ee ee ee ee eexx xx yy zz zzyyε ε= + ⊗ + + ⊗ + ⊗   (1) 

 where εxx  and ε yy  denote the macroscopically applied nominal 
strains and eexx , eeyy  and eezz  are the basis vectors of Cartesian 
coordinates. 

 Without loss of generality, we focus our attention to propor-
tional straining paths in principal nominal strain space. More 
specifi cally, we assume that the ratio of the principal nominal 
strains is fi xed, namely:

 cos( ), sin( )ε λ θ ε λ θ= =xx yy   (2) 

 where λ  is the monotonically increasing load parameter and θ  
is the load path angle. In this study we consider 3 /2π θ π≤ ≤  
to investigate various biaxial compression loading conditions. 
To facilitate the comparison between deformed confi gurations 
obtained for different values of θ , we also introduce the areal 
strain defi ned as [ 29 ] 
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0
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= − = + + −

= + +

A A

A
cos sin cos sin

Area xx yy

  (3)   

 0A  and A denote the area of the RVE in the undeformed and 
deformed confi guration, respectively. 

 To understand the patterns emerging as the result of buck-
ling in the structure, we start by investigating the stability of 

the system. Taking the rectangular domain highlighted by red 
box in Figure  2  as unit cell, we consider RVEs consisting of 
 m × n  cells subjected to periodic boundary conditions. For a 
given value of θ  we progressively load each RVE and calculate 
its natural frequency along the loading path, accounting for the 
effect of large deformation induced by loading. As an example, 
in  Figure    3  a we show the results of the stability analysis for an 
RVE comprising 2 × 2 unit cells and loading path angle θ π= . 
In the undeformed confi guration (i.e. λ  = 0) all eigenvalues 

2ω are positive. However, as λ  increases, the eigenvalues 
associated with each mode gradually decrease and eventually 
become negative. The critical loading parameter λcr  associated 
with each mode can be easily extracted from the data, since it 
corresponds to the intersection point between each curve and 
the horizontal line 02ω = .  

 For this specifi c case, we fi nd that the lowest critical loading 
parameter 0.0331,1λ =cr  is associated with a mode that resem-
bles the folding mechanism shown in Figure  1 d for the 
kagome network. Here and in the following we refer to this 
mode as to the X-mode. The second mode is then triggered at 

0.0357,2λ =cr , resulting in a pattern similar to that reported in 
Figure  1 b, which we denote as Z-mode. Subsequently, the third 
and fourth modes are found at 0.0476,3 ,4λ λ= =cr cr  consisting 
of alternating rows of sheared and 3-point star-like voids as 
that shown in Figure  1 c. Finally the fi fth mode is triggered at 

0.0665,5λ =cr , comprising an array of 3-point star-like voids as 
that reported in Figure  1 a. 

 Identical calculations are then repeated for RVEs of different 
sizes and the critical strain of the infi nite periodic structure for the 
given load path angle θ  is then defi ned as the minimum of λcr 
on all possible periodic RVEs. In Figure  3 b we report the critical 
strains for periodic RVEs with  m × n  cells for θ π= . The results 
indicate that the critical loading parameter is the minimum for 
RVEs comprising an even number of unit cells in both directions 
and it is associated with the X-mode. Higher λcr is found for RVEs 
with an odd number of unit cells either in vertical or horizontal 
direction, for which the Z-mode is found to be critical. Therefore, 
when the structure is compressed with loading path angle θ π= , 
we expect the X-mode to be triggered during loading. 

 Finally, to construct the instability surface we repeat the 
same calculations for different loading path angles θ . We fi rst 
note that for all considered values of θ , the X- and Z-mode are 
always triggered either as fi rst or second mode. In Figure  3 c 
we then plot the critical load parameter associated with the 
X- and Z-mode as a function of θ . The critical load parameter 
λcr  associated with the X-mode is found to decrease at fi rst, 
to reach a minimum at (5/ 4 1/36)θ π= −  and then to pro-
gressively increase. Similar behavior is found for the critical 
loading parameter associated to the Z-mode, but in this case 
the minimum occurs at (5/4 1/36)θ π= + . Interestingly, for 

5 /4θ π<  the critical loading parameter λcr  associated to the 
X-mode is always lower than that corresponding to the Z-mode, 
so that the X-mode is expected to emerge during deformation 
for this range of loading path angles. By contrast, the Z-mode 
is expected to be triggered when 5 /4 3 /2π θ π< < , since in this 
case the lowest critical loading parameter is that corresponding 
to the Z-mode. Finally, it is worth noting that both the X- and 
Z-mode are characterized by the same critical loading para-
meter for 5 /4θ π= , suggesting that for this specifi c loading 

Adv. Funct. Mater. 2014, 
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direction a pattern corresponding to a linear combination of 
both modes may be triggered. 

 Next, guided by the stability analysis we conduct a post buck-
ling analysis on a RVE consisting of 2 × 2 unit cells by applying 

periodic boundary conditions and introducing a geometrical 
imperfection with the form of the fi rst two eigenmodes. In 
 Figure    4  a, c and e we report numerical predictions of the pat-
tern evolution for θ π= , 5 /4π and 3 /2π  at different values of 
areal strain εArea . Initially, the circular holes deform gradually 
and homogeneously. However, a transformation to a strikingly 
different pattern is triggered very early along the loading path 
(see images at 0.05ε = −Area ) and the new patterns become fur-
ther accentuated in shape with increasing strain as seen in the 
images at 0.10ε = −Area , 0.15− , 0.20−  and 0.25− . As predicted 
by the stability analysis, the structure deforms into the X- and 
Z-mode when θ π=  and 3 /2π , respectively.  

 However, a new chiral pattern resembling that reported in 
Figure  1 e for the kagome network emerges when the structure 
is compressed equibiaxially (i.e. 5 /4θ π= ). Interestingly, this 
chiral pattern does not correspond to one of the modes predicted 
by the stability analysis, but it can be obtained as a linear combi-
nation of the X- and Z-mode (see Supporting Information).  

  3.2.    Experiments 

 To verify our numerical analysis, we fabricate centimeter scale 
elastomeric structures comprising 10 × 12 unit cells and char-
acterized by initial porosity 0Ψ  = 70%, hole diameter 0D  = 
8 mm and out-of-plane thickness ∼50 mm. The samples for the 
experiments are fabricated using silicone rubber (Mold Max 60 
from Smooth-On Inc, Young’s modulus E  = 2.16 MPa) and a 
mold-casting process with molds prepared by 3D rapid proto-
typing. In-plane biaxial compression tests are performed using 
a custom-built testing set-up with four linear stages (see Sup-
porting Information). 

 Representative pictures taken during the tests at different 
levels of εArea  are presented in Figure  4 b, d and f for θ π= , 
5 /4π  and 3 /2π , respectively. We start by noting that there is 
excellent agreement between numerical (Figure  4 a, c and e) 
and experimental (Figure  4 b, d and f) results. In particular, the 
effect of the boundary conditions is found to be negligible and 
the pattern transformations induced by instability are remark-
ably uniform across the samples, so that the behavior of the 
fi nite size sample does not deviate from that of the infi nite peri-
odic structure investigated numerically. Note that for the tests 
performed with θ π=  and 3 /2θ π= , we do not constrain the 
deformation in lateral direction, since we fi nd the lateral strain 
to be negligible (more specifi cally, we fi nd the absolute value 
of lateral strain to be less than 0.05). Finally, since the speci-
mens are made of an elastomeric material, the process is fully 
reversible and repeatable. Upon release of the applied loading 
condition, the deformed samples recover their original confi gu-
rations, suggesting that this deformation mechanism can be 
exploited for the design of materials with tunable properties.   

  4.    Harnessing Multiple Folding Mechanisms 
to Design Tunable Phononic Crystals 

 Having demonstrated that multiple folding mechanism can be 
easily triggered in a triangular array of circular voids by simply 
changing the loading path angle θ , in this section we show that the 
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 Figure 3.    Numerical study of the instability of a periodic structure with 
multiple folding mechanisms. a) Evolution of eigenvalues at different levels 
of compression (loading along θ π=  path) and corresponding deforma-
tion modes. The intersection points of each curve with the horizontal line 
ω = 02  corresponds to the critical loading parameter λcr  for each mode. 
b) Critical loading parameter λcr  for RVEs consisting of  m × n  unit cells 
(loading along θ π=  path), where a unit cell consists of a rectangular 
domain with two voids. The results indicate that confi gurations with even 
number of unit cells along the two directions have the minimum critical 
strain. c) Critical loading parameter λcr  associated to the X-mode (blue 
line) and Z-mode (green line) as a function of the loading path angle θ .
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system can be exploited to design highly tunable phononic crystals 
for the control and manipulation of elastic wave propagation. 

 Phononic crystals are periodic structures in which Bragg 
scattering is exploited to effectively fi lter elastic waves by the 
generation of bandgaps—frequency ranges of strong wave 
attenuation—at wavelengths comparable to the unit cell size. [ 5 ]  
Motivated by technological applications such as the design of 
waveguides, [ 30–36 ]  frequency modulators, [ 31 ]  noise reduction 
devices, [ 37–39 ]  and vibration isolators, [ 40,41 ]  the effects of both 
material properties, [ 42–44 ]  and geometry (i.e., volume fraction 
and topology) [ 45,46 ]  on the characteristics of phononic crys-
tals have been investigated. Moreover, it has been recently 

recognized that large deformations induced by instabilities can 
be exploited to design phononic crystals whose bandgap posi-
tion and width can be reversibly tuned. [ 16–18 ]  Here, we show 
both numerically and experimentally that the tunability of the 
periodic system can be greatly enhanced in the presence of 
multiple folding mechanisms. 

  4.1.    Numerical Analysis 

 To investigate the effect of different instability-induced pat-
terns on the propagation of small amplitude elastic waves in 

Adv. Funct. Mater. 2014, 
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 Figure 4.    Numerical and experimental images of the triangular lattice loaded along θ π=  (a and b), θ π= 5 /4  (c and d), θ π= 3 /2  (e and f) at dif-
ferent levels of deformation. The results show three distinct folding mechanisms: X-mode under horizontal compression (i.e. θ π= ), Z-mode under 
vertical compression (i.e. θ π= 3 /2) and a chiral mode under equibiaxial compression (i.e. θ π= 5 /4). The deformed shapes from simulation (colored 
in bright-red and outlined in white) are superimposed on the experimental pictures showing excellent agreement. For the numerical images, we also 
show the normalized Von Mises stress distributions in the deformed confi gurations.
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the periodic structure, we fi rst conduct fi nite element anal-
ysis (see Supporting Information). We start by constructing 
the dispersion diagram for the undeformed confi guration, as 
shown in  Figure    5  a. When undeformed, the periodic structure 
possesses a complete band gap (i.e. bandgap for all directions 
of wave propagation) for /(2 ) 1.189 1.238� ω π= = −f a cT , where 
ω  is the angular frequency of the propagating wave, the lat-
tice constant a  = 10 mm is defi ned as the center-to-center dis-
tance between holes in the undeformed confi guration and cT = 
18.3 m/s is the transverse speed of sound in the constituting 
homogeneous elastomeric material. Therefore, elastic waves 
with /(2 )ω π=f  in the range 2176–2266 Hz are not allowed 
to propagate within the undeformed structure due to the 
bandgap.  

 Next, we investigate the effect of the applied load on the 
propagation of elastic waves, by considering three deformed 
confi gurations obtained by different loading path angles θ π= , 
5 /4π  and 3 /2π , but under the same areal strain, εArea  = −0.24. 
As shown in Figure  4 , these three different values of q result 
in three distinct patterns. Interestingly, the dispersion diagrams 
shown in Figure  5 -b, -c and -d indicate that the variation in pat-
terns has a strong effect on the propagation of elastic waves, 
demonstrating that in periodic elastic structures with multiple 
folding mechanisms the band gaps can be dramatically altered 

not only by the extent of deformation but also by the choice of 
the loading path. 

 In fact, when the X-mode is triggered (i.e. θ π= ), the 
pre-existing complete band gap is shifted and widened 
to 1.180 1.307� = −f . In addition, two new complete band 
gaps that do not exist in the undeformed structure appear 
at 0.699 0.765� = −f  and 1.045 1.070� = −f . Differently, for 

5 /4θ π=  the chiral folding mechanism is triggered and in this 
case the system is characterized by fi ve complete band gaps for 

0.724 0.745� = −f , 0.795 0.884− , 1.199 1.278− , 1.351 1.386− , 
and 1.461 1.509− . Finally, the Z-mode is triggered for 3 /2θ π=  
and in this case the deformation is found to widen the pre-
existing complete band gap and to open only one complete new 
band gap for 1.207 1.277� = −f .  

  4.2.    Experiments 

 To validate the predictions of the numerical simulations, fre-
quency response measurements of the elastomeric structure 
are made using an electro-dynamic shaker directly connected 
to one end of samples through a load cell to provide vibrations. 

 The dynamic response is recorded using a miniature accel-
erometer attached to the far end of the sample (see Supporting 

Adv. Funct. Mater. 2014,  
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 Figure 5.    Comparison between the numerical dispersion relations (left) and the experimental frequency response functions (right) of the system 
obtained for different values of θ .
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Information). Measurements are conducted at different level 
of deformation and the transmittance is computed as the ratio 
between the output acceleration signal recorded at the far end 
of the sample and the input force signal from the load cell (i.e.,

( )/ ( )ω ωA F ). 
 Figure  5  shows the comparison between numerical and 

experimental results. For each of the four panels in Figure  5 , 
the dispersion plots on the left are calculated numerically and 
plots on the right show the transmittance curves from experi-
ments. Here, the numerical calculations consider all propa-
gation directions in an infi nitely periodic structure, while the 
experimental results are shown for only one propagation direc-
tion (G-Y direction for Figure  5 a, b and c; G-X direction for 
d). Nevertheless, we still observe a good match between these 
two sets of results. In the undeformed case, the experimental 
response indicates an apparent attenuation at the numerically 
calculated band gap frequency. After the structure is deformed 
into different patterns, the calculated complete band gaps can 
still fi nd their signatures in the experimental results, with 
very few exceptions due to fi nite-size boundary effects that are 
not investigated in this study. Furthermore, the transmittance 
curves from experiments also exhibit some features of direc-
tional band gaps, indicated by the lighter color-shaded areas in 
Figure  5 .   

  5.    Conclusion 

 We demonstrated both numerically and experimentally the 
design of highly tunable phononic crystals by harnessing 
multiple folding mechanisms in periodic elastomeric struc-
tures comprising a triangular array of circular holes. We 
started with a geometrical analysis of 2D rigid periodic net-
works and found that a kagome lattice can have multiple 
folding mechanisms. 

 Guided by these results, we rationally designed the corre-
sponding continuum soft periodic porous structure and showed 
that three different patterns induced by buckling can be trig-
gered during compressive loading by changing the direction of 
loading. Remarkably, the dynamic response of the system was 
found to be highly affected by the pattern induced by buckling, 
demonstrating that the band gaps can be tuned both by defor-
mation mode and the extent of deformation. 

 Our fi nding opens new opportunities to design multi-
functional devices with enhanced tunability because (i) the 
mechanism can be applied to various length-scales; (ii) the 
various patterns can be triggered upon application of dif-
ferent stimuli and using different materials; (iii) the process 
is fully reversible and (iv) more importantly, the formation 
of different patterns can be easily controlled by changing the 
loading direction. By engineering geometry, length scales, 
and materials, we can envision smart systems that control the 
wave propagation autonomously depending on the loading 
conditions.  

  6.    Experimental Section 
 Please see the Supporting Information for experimental details.  

  Supporting Information 
 Supporting Information is available from the Wiley Online Library or 
from the author.  
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PERIODIC NETWORKS OF RIGID POLYGONS

To identify periodic porous elastic structures with multiple folding mechanisms, we investigate the flexibility of
periodic planar networks built from rigid corner-connected (hinged) polygons, which can rotate freely around the
hinges. First, we show that a network of connected squares has a single folding mechanism. Then, as previously
demonstrated by Guest et al. [1], we show that in planar networks built from equilateral triangles the number of
folding mechanisms grows with the size of unit cell.

Network of rigid squares

We start by investigating the folding mechanisms of a network of connected squares. To demonstrate that this
structure has a single folding mechanism, we consider unit cells of different sizes and determine their folding mech-
anisms by enforcing geometric compatibility. We first focus on a unit cell consisting of two connected squares and
show that in this case no folding mechanism is supported by the network. Then, we consider a unit cell comprising
four squares and show that in this case only one folding mechanism exists. Our simple analysis can be extended to
larger unit cells, indicating that only one single folding mechanism is possible for this network (for the sake of brevity
here we do not report results for unit cells with more than four squares).

Unit cell with two squares

Figure S1: Geometrical compatibility of a unit cell with two squares. θ1 indicates the rotation angle of the light-green square.
Geometrical compatibility between adjacent unit cells requires the red and blue markers overlap.

Here we consider a unit cell consisting of two corner-connected squares with edge L0 (see Fig. S1-a). If one of the
two squares rotate by an angle θ1, geometrical compatibility requires that the red and blue circular markers in Fig.
S1-c overlap, yielding

L0 cos(π) + L0 cos
(π

2
+ θ1

)
+ L0 cos(0 + θ1) + L0 cos(−π

2
) = 0, (S1)

L0 sin(π) + L0 sin(
π

2
+ θ1) + L0 sin(0 + θ1) + L0 sin(−π

2
) = 0.

It is easy to show that Eqs. (S1) are both satisfied only when θ1 = 0, indicating that no folding mechanism is
supported by the network when a unit cell consisting of two squares is considered.
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Unit cell with four squares

Figure S2: Geometrical compatibility of a unit cell with four squares. θ1 indicates the rotation angle of the light-green
squares. Geometrical compatibility between adjacent unit cells requires that the red and blue markers overlap in pairs (i.e. red
round/diamond marker overlap with blue round/diamond markers).

Next, we focus on a unit cell consisting of four corner-connected squares with edge L0 (see Fig. S2-a). First, we
notice that compatibility within the unit cell requires that opposite squares undergo the same rotation. Therefore,
without loss of generality, we assume that two of the four squares rotate by an angle θ1 and two do not rotate (see
Fig. S2-b). It is easy to see that in this case compatibility between adjacent unit cells is also satisfied (Fig. S2-c and
d), indicating that the folding mechanism shown in Fig. S2-d is supported by the structure. Although, for the sake of
brevity, here we do not include analysis for unit cells of larger size, these are straightforward. Such analysis indicate
that this folding mechanism is the only one supported by the structure, resulting in a pattern of rhombic, elongated
holes with the major axis perpendicular to each other (see Fig. S3).

Figure S3: The folding mechanism for a network of rigid squares. (a) Expanded configuration. (b) Partially folded configuration.

Network of rigid triangles

We now proceed to investigate the folding mechanisms of a network of connected triangles arranged to form a
kagome structure. First, we consider a unit cell consisting of only two triangles, which is the smallest unit cell for
the network, and identify one folding mechanism for the system. Then, we focus on a larger unit cell comprising
four triangles and find an additional folding mechanism. Finally, we establish a simple rule that enables us to easily
construct the folding mechanisms for unit cells of arbitrary size.
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Unit cell with two triangles

Figure S4: Geometrical compatibility of a unit cell with two triangles. θ1 indicates the rotation angle of the light-green triangle.
Geometrical compatibility between adjacent unit cells requires the red and blue markers overlap.

Here we consider a unit cell consisting of two corner-connected triangles with edge L0 (see Fig. S4-a). If one of the
two triangles rotates by an angle θ1 (see Fig. S4-b), geometrical compatibility requires that the red and blue circular
markers in Fig. S4-c overlap, yielding

L0 cos(
2π

3
) + L0 cos(

π

3
+ θ1) + L0 cos(0) + L0 cos(−π

3
+ θ1) + L0 cos(−2π

3
) + L0 cos(−π + θ1) = 0, (S2)

L0 sin(
2π

3
) + L0 sin(

π

3
+ θ1) + L0 sin(0) + L0 sin(−π

3
+ θ1) + L0 sin(−2π

3
) + L0 sin(−π + θ1) = 0.

It is easy to see that Eqs. (S2) are automatically satisfied for any choice of 0 < θ1 < 2π/3, indicating that the
folding mechanism shown in Fig. S4-d is supported by the structure. Such folding mechanism results in the formation
of a pattern where all hexagonal holes progressively reduce to 3 point star-like shapes (see Fig. S5).

Figure S5: The folding mechanism of network of rigid triangles with a unit cell with two triangles. (a) Expanded configuration.
(b) Partially folded configuration.

Unit cell with four triangles

Next, we focus on a unit cell comprising of four corner-connected triangles, as shown in Fig. S6-a. Without loss of
generality we assume that one triangle does not rotate, while the other three triangles rotate by angles θ1, θ2 and θ3
(Fig. S6-b). Geometrical compatibility between adjacent unit cells requires

L0 cos(
2π

3
) + L0 cos(

π

3
+ θ1) + L0 cos(θ2) + L0 cos(−π

3
+ θ1) + L0 cos(−2π

3
) + L0 cos(−π + θ3) = 0, (S3)

L0 sin(
2π

3
) + L0 sin(

π

3
+ θ1) + L0 sin(θ2) + L0 sin(−π

3
+ θ1) + L0 sin(−2π

3
) + L0 sin(−π + θ3) = 0,



4

Figure S6: Geometrical compatibility of a unit cell with four triangles. θ1, θ2, and θ3 indicates the rotation of the green,
light-green and yellow triangles, respectively. Geometrical constraints between adjacent unit cells require the red and blue
markers overlap.

which can be easily simplified to

−1 + cos(θ1) + cos(θ2)− cos(θ3) = 0, (S4)

sin(θ1) + sin(θ2)− sin(θ3) = 0.

Eqs. (S4) are automatically satisfied for {
θ1 = θ3,
θ2 = 0,

(S5)

and {
θ1 = 0,
θ2 = θ3.

(S6)

The first solution (Eqs. (S5)) results in the formation of the same pattern found when investigating the unit cell
consisting of two triangles, as shown in Fig. S5. The second solution (Eqs. (S6)) is associated to the formation of a
pattern of sheared voids where the shear direction alternates back and forth from row to row (see Fig. S7).

Figure S7: The additional folding mechanism of network of rigid triangles with a unit cell of four triangles. (a) Expanded
configuration. (b) Partially folded configuration.

Folding mechanisms for larger unit cells

Additional folding mechanisms for the kagome network can be identified by repeating similar calculations as reported
above for larger unit cells. Furthermore, the construction of additional folding mechanisms is greatly facilitated by
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the observation that geometric compatibility requires the triangles to rotate by ±α (i.e. by the same amount either
in clockwise or anti-clockwise direction, see magenta and cyan triangles in Fig. S8) or not to rotate at all (i.e. α = 0,
see yellow triangles in Fig. S8). Although here, for the sake of brevity, we do not report the calculations to identify
the folding mechanisms for larger unit cells, in Fig. S8 we show several of them.

Figure S8: Nine folding mechanisms for a triangular network of connected triangles. The unit cell for each folding mechanism
is outlined in black.

FINITE ELEMENT SIMULATIONS

Stability analysis: chiral pattern as linear combination of the X- and Z-mode

As shown in Fig. 3 of the main text our stability analysis reveals that for all considered values of θ (i.e. π <
θ < 3π/2), the X- and Z-modes are always triggered either as first or second mode. In particular, for π < θ < 5π/4
the critical loading parameter λcr associated to the X-mode is found to be always lower than that associated to the
Z-mode, so that the X-mode is expected to emerge during deformation for this range of loading path angles. By
contrast, the Z-mode is expected to be triggered when 5π/4 < θ < 3π/2, since in this case the lowest critical loading
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Figure S9: Schematic illustration of superimposition of X- and Z-modes. The chiral mode appears by a linear combination of
the X- and Z- modes.

parameter is that corresponding to the Z-mode. Interestingly, for θ = 5π/4 both the X- and Z-modes are characterized
by the same critical loading parameter, so that any linear combination of the two modes is a valid eigenmode.

In Fig. S9 we report both the X- and Z-modes and three linear combinations of them. Interestingly, one of these
linear combinations corresponds to a chiral pattern comprising six highly deformed voids surrounding an undeformed
one, resembling that reported in Fig. 1-e of the main text for the kagome network.

Next, guided by the stability analysis we conduct a post-buckling analysis on a RVE consisting of 2×2 unit cells
by applying periodic boundary conditions and introducing a geometrical imperfection with the form of the first two
eigenmodes (i.e. a linear combination of the X- and Z- modes). As shown in Fig. 4-c of the main text, for θ = 5π/4
a chiral pattern resembling that reported in Fig. S9 emerges.

Elastic wave propagation analysis

In order to obtain the dispersion relation for a triangular array of circular holes in an elastomeric matrix and
to investigate the effect of the applied deformation on the propagation of elastic waves, frequency domain wave
propagation analyses are performed on both the undeformed and deformed configurations generated by the post-
buckling analysis using the finite element method [2, 3]. To work with the complex-valued displacements of the
Bloch-wave calculation within the confines of a commercial code, all fields are split into real and imaginary parts [2].
In this way the equilibrium equations split into two sets of uncoupled equations for the real and imaginary parts.
Thus, the eigenfrequency ω can be computed for any wave vector k using two identical finite-element meshes for
the RVE, one for the real part and the other for the imaginary part, and coupling them by Bloch-type displacement
boundary conditions.

The phononic bandgaps are identified by checking all eigenfrequency ω(k) for all k vectors in the irreducible
Brillouin zone. The bandgaps (i.e. range in frequencies for which the propagation of waves is barred) are given by
the frequency ranges within which no ω(k) exists. Numerically, a discrete set of k vectors in the irreducible Brillouin
zone need to be chosen in the analysis. For the simulations presented in this paper, five-segment wave-vector paths
G−X−M−G−Y −M defining the perimeter and the diagonal of the irreducible Brillouin zone are considered
and the eigenfrequencies ω(k) are calculated for twenty points uniformly distributed on each line segment.

Note that all the calculations are performed on an enlarged unit cell (comprising 2×2 unit cells) with size dictated
by the new periodicity introduced by buckling, as shown in Fig. S10-a. Such RVE is spanned by the lattice vectors
a1 = [a, 0] and a2 = [0,

√
3a], where a is the center-to-center distance between adjacent holes and can be expressed as

a function of the porosity ψo and hole diameter D0 as a = (
√
3πD2

0

6ψo
)
1/2

. Therefore the reciprocal space is defined by,

b1 = 2π
a2 × z

‖ z ‖2
, b2 = 2π

z× a1
‖ z ‖2

, (S7)

where z = a1 × a2.
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Figure S10: (a) Schematic of the structure in the undeformed configuration. The considered RVE spanned by the lattice vectors
a1 and a2 is shown in grey. (b) The corresponding Brillouin zone in reciprocal space is spanned by the vectors b1 and b2.

EXPERIMENTS

Biaxial compression tests

To verify findings from numerical models that show multiple folding mechanisms depending on the loading directions,
we did experiments using a custom set-up that can control the loading in two orthogonal directions independently
providing the capability to test the sample in arbitrary biaxial loading conditions. (see Fig. S11-a)

Biaxial compression tests were conducted on two perpendicularly placed linear quasi-static stages (model SLP-
35 from Nippon Pulse America Inc.) in a displacement-controlled manner. The stages were configured to realize an
optimal spatial resolution of 1 µm. The fine movement of the stages was coordinated through a LabView program and
the ratio between the engineering strains in two directions was kept constant during the biaxial test. The specimens
were compressed through a set of customary compression fixtures, which were designed to ensure them not to collide
during the compression tests (see Fig. S11-b). The overall fixture set consisted of two pairs of parts with each pair
for the compressive movement in one of two orthogonal directions. The specimen was not clamped to the fixtures
because the friction between the specimen and fixture surface was enough to hold the specimen. Lubricant was used
on surfaces of fixtures to reduce friction and boundary effects. The compression tests were performed at the cross-head
velocity of 5mm/min until the structure was densified. During the test, a Nikon D90 SLR camera was used to capture
the resulting patterns from the sample.

Figure S11: (a) Picture of the biaxial setup used for our compression test. (b) Sketch of the biaxial compression fixture whused
for our compression experiments.

Wave propagation tests

To investigate the effect of different instability-induced patterns on the propagation of small amplitude elastic waves
in the periodic structure, we conducted wave propagation tests for the the udeformed sample and for three deformed
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Figure S12: Picture of the set-up used for our wave propagation tests.

configurations obtained by different loading path angles θ = π, 5π/4 and 3π/2, but under the same areal strain,
εArea = −0.24.

The overall set-up for the tests is shown in Fig. S12. All components were placed on top of a passive optical table
(model PTM11104 from Thorlabs) to isolate from ambient vibrations. First, a Gaussian white noise was generated
from the amplifier and was used to control the shaker (model K2025E013 from The Modal Shop). The dynamic
response was recorded using a miniature accelerometer (352C22 PCB Piezotronics) attached to the far end of the
sample. To apply a uniform in-plane wave, we used a PTFE (Polytetrafluoroethylene ) block to increase the contact
area between the shaker and the sample. Furthermore, to effectively transmit the vibration from the shaker to the
sample, all contact interfaces (shaker/PTFE block, PTFE block/sample, sample/accelerometer) were temporarily
super-glued.

The input force signals were detected at the shaker (input) from a load cell. The acceleration at the far end of
the sample (output) was detected using an ultra-light piezo-electric accelerometer. The detected signal was acquired
through a data acquisition module and further processed and recorded by a computer. The transmittance was
computed as the ratio between the output acceleration signal recorded at the far end of the sample and the input
force signal from the load cell (i.e., ‖A(ω)/F (ω)‖).

A bench vise was used to apply the desired value of deformation to the sample (see Fig. S13). In Fig. S13-b and
-c we show the sample deformed into the in X-mode and Z-mode, respectively. In these cases, the shaker was directly
connected to one end of the sample. Differently, when the system was deformed equibiaxially, four clamps are needed,
so that all four edges of the sample were in contact with the fixture (see Fig. S13-d). In this case the input wave from
the shaker was transmitted through an inserted long rod and the output wave was detected from another inserted
long rod away from the input.
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Figure S13: (a) Picture of the undeformed sample with the shaker and accelerometer connected to it. (b) Picture of the sample
deformed into the X-mode with the shaker and accelerometer connected to it. (c) Picture of the sample deformed into the
Z-mode with the shaker and accelerometer connected to it. (d) Picture of the sample deformed into the chiral mode with the
shaker and accelerometer connected to it.




