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We numerically investigate the propagation of small-amplitude elastic waves in random fiber

networks. Our analysis reveals that the dynamic response of the system is not only controlled by its

overall elasticity, but also by the local microstructure. In fact, we find that the longest fiber-

segment plays a key role in dynamics when the network is excited with waves of short wavelength.

In this case, the Bloch modes are highly non-affine as the longest segments oscillate close to their

resonances. Based on this observation, we predict the low frequency dispersion curves of random

fiber networks. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936327]

Disordered fibrous networks are ubiquitous and can be

found in sound and thermal insulation systems,1 paper and

paper products,2 filtration and liquid absorption systems,3 bi-

ological membranes and connective tissues,4–6 just to name a

few. The structural behavior of these networks often plays a

key role, motivating a deep interest in their mechanical

response.7 It is now well recognized that the mechanics of fi-

brous networks depends not only on the elastic properties of

the constituent fibers but also on the network connectivity.1,2

Furthermore, it has been shown that the deformation transi-

tions from affine to non-affine8–10 as the network density or

fiber cross-sectional area decreases.11 However, despite the

fact that fiber networks are often subjected to dynamic load-

ings, previous studies have primarily focused on the static

behavior of random networks.12–16 Surprisingly, while the

dynamic behavior of periodic beam networks has recently

attracted considerable interest,17–20 the propagation of elastic

waves in random fibrous networks has not yet been studied.

By contrast, the propagation of elastic waves in random

spring networks23,24 and disordered packing of particles25–27

have been extensively studied. In particular, it has been

shown that close to the jamming point (defined as the point

where disordered matter transition from a flowing to a rigid

state) such systems are anomalous in that they exhibit an

excess of low frequency modes, and they do not appear to

exhibit any ordinary continuum behavior.25–27 However, the

response of random fiber networks, in which the bending de-

formation mode of fibers is taken into account (i.e., networks

of beams), is significantly different, since such systems are

rigid for average coordination numbers, �z, below the jam-

ming point (i.e., for �z < 4).26

In this letter, we investigate numerically the propagation

of small-amplitude elastic waves in elastically stable random

fibrous networks with 3 < �z < 4, focusing on the first and

second modes. We consider two-dimensional random net-

works composed of cylindrical fibers of length L0, and radius

r made of an isotropic, linearly elastic material with Young’s

modulus Ef, shear modulus Gf, and density qf. The networks

are generated by depositing randomly N fibers of equal

length L0 in a periodic unit cell of dimensions a� a. Cross-

links (welded joints) are then introduced at all points where

the fibers intersect, resulting in a Poisson distribution for the

lengths of fiber-segments.28,29

It has been shown that the key parameters governing the

static response of such fiber networks are the network density,

q ¼ NL0=a2, and the ratio between bending and axial stiffness

of fibers, lb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEf If Þ=ðEf Af Þ

p
¼ r=2 (where If and Af denote

the moment of inertia and the cross-sectional area of the

fibers, respectively).11,28 We choose the non-dimensional sys-

tem parameters �q ¼ qL0; �r ¼ r=L0 ¼ 2lb=L0; �k ¼ k=L0, and

�x ¼ x�r=x0 to present the results, where k and x are the

wavelength and frequency of the propagating elastic waves,

respectively. Moreover, x0 is the first resonance frequency of

a fiber-segment of length L0 and radius r, assuming clamped

boundary conditions at both ends (i.e., x0 ¼ 22:37ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEf r2Þ=ð4qf L

4
0Þ

q
30). Finally, since we will find that the

dynamic response of the networks is controlled also by the

length of their longest fiber-segment, Lmax, we introduce the

dimensionless parameter �Lmax ¼ Lmax=L0.

To study the propagation of small-amplitude elastic

waves in such networks, we perform frequency-domain

wave propagation analysis within the finite element (FE)

framework using the commercial package Abaqus/Standard.

Models of the periodic unit cell are built using Euler-

Bernoulli beam elements (Abaqus element type B23), and

Bloch-type boundary conditions are applied to the edges of

the unit cell31,32 (see Ref. 33 for details on the wave propa-

gation analysis). We then calculate the dispersion relation

x ¼ xðkÞ using the frequency-domain perturbation method.

We start by computing the density of vibrational states

for a network with �q ¼ 25 and �r ¼ 0.004 (see Fig. 1(c)).

The results reported in Fig. 1(a) are based on a total of

2500k-space points uniformly distributed across the entire

first Brillouin zone and are normalized by the number of

k-space points. In stark contrast with the case of a network

of springs, whose density of state plot is dominated by a

peak at x � 0 (see Fig. S2 in Ref. 33), the response of the

fiber network is characterized by several peaks at non-zero

frequencies. The first peak occurs at �x ¼ 0:011, which cor-

responds to the resonance frequency of the longest fiber-

segment �Lmax¼ 0.59.

0003-6951/2015/107(21)/211904/5/$30.00 VC 2015 AIP Publishing LLC107, 211904-1
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To gain more insight into the dynamic behavior of the

network, in Fig. 1(b), we plot its dispersion band diagram in

an arbitrary direction (here chosen to be the horizontal direc-

tion ex). Similar to the case of an homogeneous linear elastic

material,34 two bands emanate from the origin, correspond-

ing to shear and dilatational waves propagating with speeds

c1 and c2 in the long wavelength limit. However, as the

wavelength decreases, the bands eventually reach the reso-

nance frequency of the longest fiber-segment and flatten.35 It

is important to note that this transition has a profound effect

on the Bloch modes (see Fig. 1(d)). While in the long wave-

length limit (�k ¼ 100 in Fig. 1(d)), both the first and second

modes are characterized by low degree of non-affinity, for

wavelength shorter than that of the transition (�k ¼ 9 in Fig.

1(d)), the vibrations are fully localized within the longest

fiber-segment (see the red fiber with maximum displacement

in the second mode), visually suggesting that that the level

of non-affinity increases as the wavelength of the propagat-

ing waves decreases.36

To study the dynamic response of the fiber network in

detail, first we investigate the response of the system in the

long wavelength regime and determine the speeds c1 and c2

associated with the first (transverse) and second (longitudi-

nal) modes as a function of the microstructural parameters

of the network. Data for 115 random fiber networks with

network densities �q ranging from 12.5 to 25, and �r ranging

from 0.00004 to 0.08 are presented in Fig. 2. To collapse

the data onto a master curve, the same scaling parameter as

in the static analysis of the network elasticity is used for

the horizontal axis (i.e., w ¼ log10½�q7ð�r=2Þ2Þ�37), and the

wave speeds are normalized by the corresponding bulk

properties of the fiber material (i.e., ðcf Þ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Gf=qf

q
and

ðcf Þ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gf ð4Gf � Ef Þ=½qf ð3Gf � Ef Þ�

q
34). As for the static

case, the master plot has two well-defined regions. It has

been shown that the transition between those two regions

correlates with the transformation of the deformation field

of the networks from non-affine to affine, as well as with

the shift of energy storage from bending to axial.37 For

small values of w, the slope of the master curve is 1/2, indi-

cating that the wave speeds of the networks are propor-

tional to �q3:5�r in the long wavelength regime. Thus, the

FIG. 1. (a) Density of vibrational states

and (b) dispersion curves of a 2D cross-

linked random network with �q ¼ 25

and �r ¼ 0.004 shown in (c). (d) The

first (shear-like) and second (dilatation-

like) Bloch modes for three different

wavelengths of the propagating waves.

Note that the hybridization of the folded

shear-like mode with dilation-like mode

observed at �x ¼ 15 in (b) (an artifact

of Bloch-type boundary conditions) has

already been observed for surface

acoustic waves.21,22

FIG. 2. Master plot providing the normalized wave speeds associated with

the first and second modes as a function of system parameters. a ¼ 0:38 is a

non-dimensional constant that has the same value as in the analysis of net-

work elasticity.37 ðcf Þ1 and ðcf Þ2 are the transverse and longitudinal wave

speeds for the fibers material, respectively.

211904-2 Babaee et al. Appl. Phys. Lett. 107, 211904 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

140.247.87.68 On: Tue, 24 Nov 2015 15:48:01



overall elastic modulus of networks, E � c2�q r2,38 is pro-

portional to �q8�r4, exactly as predicted by the static analy-

sis. However, for w> 6, all data converge to a horizontal

asymptote, so that the long wavelength speeds of the net-

works become independent of �q and �r , and E � �q�r2, again

in full agreement with the static analysis.37

Having determined the effect of the system parameters

�q and �r on the long wavelength response, we proceed to

investigate the effect of the dimensionless wavelength, �k, on

the propagation of the elastic waves. To this end, we calcu-

late the dispersion bands for the networks and also investi-

gate the effect of �k on their Bloch modes by directly

measuring the evolution of their degree of non-affinity. Note

that the deviation from affine deformation, denoted by �Aj,

for the j-th mode is defined as39

�Aj ¼
1

n U0

Xn

i¼1

kui
j � ui

aff ; jk ; (1)

where n is the number of the nodes in a full sinusoidal pe-

riod, U0 is the amplitude of the propagating wave, ui
j is the

displacement of the i-th node associated with the j-th mode,

and ui
aff ; j the corresponding values when the deformation is

fully affine. For a wave propagating along the ex direction,

ui
aff ; 1 ¼ U0 sin½2pðxi � x0Þ=k�ey, where xi identifies the

coordinate in ex direction of i-th node, ey is a unit vector

perpendicular to ex, and x0 represents the phase of the

mode.

In Figs. 3(a) and 3(b), we report the first dispersion

band and the evolution of �A as a function of the normal-

ized wavelength �k for two random networks characterized

by the same values of �q and �r (�q ¼ 25 and �r ¼ 0.0004), but

different lengths of the longest fiber-segment ( �Lmax ¼ 0.55

and 0.9).40 Focusing on the dispersion bands (Fig. 3(a)), we

see that the two networks are characterized by identical

response in the long wavelength limit. We also find that in

this region �A is not affected by �k (Fig. 3(b)). In fact, �A
is the same as that calculated in the static case and is dic-

tated by the overall elasticity of the system.13,28,41,42 By

contrast, the wavelength �k
�

and frequency x�, at which the

band flattens is found to be significantly affected by �Lmax.

For the network with �Lmax ¼ 0.55 (red line), we find

that �k
� ¼ 22 and �x� ¼ 0.0012, while if �Lmax ¼ 0.9 (black

line), �k
�¼ 63 and �x�¼ 0.0005. We also note that for �k<�k

�
;

�A suddenly rises (see Fig. 3(b)), reflecting the emergence

of fully localized modes (i.e., see the second mode for �k¼9

in Fig. 1(d)).

Finally, the evolution of DA also reveals that the sharp

transition at �k
�

is preceded by another transition at �k
0
, at

which �A gradually increases (note that �k
0

is defined as the

wavelength for which @ð�AÞ=@�k ¼ 0:2%). Inspection of

the modes reveals that this increase of �A is induced by the

FIG. 3. (a) and (b) Effect of the longest

fiber-segment, �Lmax, on (a) dispersion

curves, and (b) degree of non-affinity

as a function of �k for networks with

�q ¼ 25 and �r ¼ 0.0004. (c) and (d)

Effect of �Lmax on transition frequencies

(c) x0, and (d) x�, for different random

networks (blue markers) with �q ¼ 25,
�r ¼ 0.0004. The blue, red, green, and

black triangular markers correspond to

the exactly same network (shown as an

inset in (c)), but with different �Lmax

attached to it (shown in the inset).

211904-3 Babaee et al. Appl. Phys. Lett. 107, 211904 (2015)
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gradual localization of the deformation within the longest

fiber-segment of the network (i.e., see the first and second

modes for �k ¼ 16, and the first mode for �k ¼ 9 in Fig. 1(d)).

Importantly, we find that in the vicinity of this transition, the

dispersion curve starts deviating from linearity (see Fig. S3

in Ref. 33), so that �k
0

also identifies the threshold below

which the fibrous network behaves as a dispersive wave me-

dium. Interestingly, the results reported in Figs. 3(a) and 3(b)

indicate that �k
0
also is significantly affected by Lmax.

To fully understand the key role played by the longest

fiber-segment in the dynamic response of random fiber net-

works, we calculate the characteristic frequencies, �x0 ¼ x0�r=
x0 and �x� ¼ x��r=x0, for 16 different networks characterized

by the same system parameters �q ¼ 25 and �r ¼ 0.0004, but

different values of �Lmax. The results reported in Fig. 3(c) show

that �x� scales with 1=�Lmax
2. This scaling law derives directly

from the expression for the resonance frequency of a fiber-

segment of length Lmax (i.e., x� ¼ 22:37
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEf If Þ=ðqf Af L4

maxÞ
q

,

since this frequency corresponds to fully localization of vibra-

tions within the longest fiber-segment. Moreover, we interpret

the transition frequency �x0 as the onset of resonance of the

longest fiber-segment, and expect that �x0=�x� is affected by

the network environment surrounding the fiber of length Lmax.

In particular, we expect that �x0 is always smaller than �x�, and

�x0=�x� ! 1 as �Lmax increases (i.e., Lmax becomes very large

compared with the other segments of the network). Therefore,

since �x� scales with 1=�Lmax
2, it is expected that �x0 scales

with 1=�Lmax
m in which m< 2. Fig. 3(d) shows �x0 is propor-

tional to 1=�Lmax
1:6 for networks with �q ¼ 25 and �r ¼ 0.0004.

The robustness of these dependencies is confirmed by the fact

that when we attach a longer fiber of lengths �Lmax ¼ 0.796

(red triangular marker), �Lmax ¼ 0.821 (green triangular

marker), or �Lmax ¼ 0.861 (black triangular marker) to the net-

work with �Lmax ¼ 0.55 (blue triangular marker), �x0 and �x�

are considerably altered, but are still proportional to 1=�Lmax
1:6

and 1=�Lmax
2, respectively.

So far, we focused on fiber networks with �q ¼ 25 and

�r ¼ 0.0004, and showed that their long wavelength response

is purely governed by these two parameters, while �Lmax plays

an important role as �k is reduced, and strongly affects the

wavelength �k
�

at which the vibrations localize within a sin-

gle fiber. However, it is important to recognize that �k
�

is not

only controlled by �Lmax, but also by �q and �r . In fact, �k
�

is

determined by the intersection between the flat band at �x�

(which is determined by �r and �Lmax), and the band with wave

speed c1 in the long wavelength regime (which is controlled

by �q and �r , as predicted in Fig. 2).

To better understand these dependencies, in Fig. 4(a),

we focus on networks with �r ¼ 0.0004 and 0:55 < �Lmax

< 0:9, and determine �k
�

for �q ¼ 25, 20, and 12.5. Note that,

for the sake of simplicity, �k
�

is predicted without accounting

for the deviation of the shear-dominated band from linearity

occurring for �k < �k
0
, since this deviation does not alter the

trends discussed here. All networks considered in Fig. 4(a)

are characterized by the same range of possible values for

�x� (grey shaded region), while c1 increases as �q increases

(according to the master plot in Fig. 2). Consequently, the

range of possible values for �k
�

moves to longer wavelengths

as �q increases. Note that such effect of �q on �k
�

is counter-

intuitive. In fact, we would expect that for larger values of �q,

waves of shorter wavelength are needed to trigger localized

modes, since according to static behavior of random net-

works,11 both overall stiffness and level of affinity of the sys-

tem increase monotonically with �q.

On the other hand, if �q remains constant and �r increases,

the range of possible values for �x� increases quadratically,

as illustrated in Fig. 4(b). Since c1 increases at most linearly

as �r increases (see master plot in Fig. 2), the slope of the

shear band in the long wavelength regime increases slower

than �x� limits. Hence, in networks with larger �r , highly

localized modes are more likely triggered at shorter wave-

lengths, as illustrated in Fig. 4(b).

In summary, our analyses reveal that the dynamic

response of the networks depends not only on their micro-

structural parameters, but also on the length of the longest

fiber-segment and the wavelength of the propagating waves.

Furthermore, we found that that the propagation of the elas-

tic waves through the system is characterized by three

regimes: (i) for long wavelengths, the dynamic response of

the system is fully controlled by the overall elasticity of the

networks and is non-dispersive; (ii) for intermediate wave-

lengths, the networks behave as dispersive wave media and

the non-affinity level of the Bloch modes increases

FIG. 4. Effects of (a) �q, and (b) �r on the wavelength �k
�
, at which the vibra-

tions localize within a single fiber for the first mode. The shaded areas indicate

the range of resonance frequencies for networks with 0:55 < �Lmax < 0:9.

211904-4 Babaee et al. Appl. Phys. Lett. 107, 211904 (2015)
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gradually; (iii) in the short wavelengths regime, the Bloch

modes are highly non-affine with all deformation localized

within the longest fiber-segment of the network. We also

note that in this study, we focused on the dynamic response

of 2D networks, while the study of more realistic 3D systems

(whose behavior has been found to be qualitatively similar to

that of 2D networks for the static case7,9) will be the subject

of future investigations. Our results not only shed light on

the propagation of elastic waves in random fibrous networks,

but also open avenues for the design of fiber networks for

applications in which the structure is exposed to mechanical

vibrations.

This work has been supported by Harvard MRSEC

through Grant No. DMR-1420570 and by NSF through Grant

Nos. CMMI-1120724 and CMMI-1149456 (CAREER). K.B.

acknowledges start-up funds from the Harvard School of

Engineering and Applied Sciences and the support from the

Kavli Institute and Wyss Institute at Harvard University.

1A. Kabla and L. Mahadevan, J. R. Soc., Interface/R. Soc. 4, 99 (2007).
2R. C. Picu, Soft Matter 7, 6768 (2011).
3K. K. Chawla, Fibrous Materials (Cambridge University Press,

Cambridge, New York, 1998).
4K. E. Kasza, A. C. Rowat, J. Liu, T. E. Angelini, C. P. Brangwynne, G. H.

Koenderink, and D. A. Weitz, Curr. Opin. Cell Biol. 19, 101 (2007).
5D. A. Fletcher and R. D. Mullins, Nature 463, 485 (2010).
6C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and P. A.

Janmey, Nature 435, 191–194 (2005).
7C. P. Broedersz and F. C. MacKintosh, Rev. Mod. Phys. 86, 995 (2014).
8An affine deformation is one where a macroscopic deformation applied on

a network is translated uniformly to the microscopic level. On the con-

trary, for a non-affine deformation, the microscopic deformation deviates

from the far field one.
9D. Head, A. Levine, and F. MacKintosh, Phys. Rev. E 68, 061907 (2003).

10B. DiDonna and T. Lubensky, Phys. Rev. E 72, 066619 (2005).
11A. Shahsavari and R. C. Picu, Phys. Rev. E 86, 011923 (2012).
12C. P. Broedersz, X. Mao, T. C. Lubensky, and F. C. MacKintosh, Nat.

Phys. 7, 983 (2011).
13C. Heussinger and E. Frey, Phys. Rev. Lett. 97, 105501 (2006).
14M. Wyart, H. Liang, A. Kabla, and L. Mahadevan, Phys. Rev. Lett. 101,

215501 (2008).
15D. Head, A. Levine, and F. MacKintosh, Phys. Rev. Lett. 91, 108102

(2003).
16E. Conti and F. MacKintosh, Phys. Rev. Lett. 102, 088102 (2009).
17M. Ruzzene, F. Scarpa, and F. Soranna, Smart Mater. Struct. 12, 363

(2003).
18A. S. Phani, J. Woodhouse, and N. A. Fleck, J. Acoust. Soc. Am. 119,

1995 (2006).
19P. Wang, F. Casadei, S. H. Kang, and K. Bertoldi, Phys. Rev. B 91,

020103 (2015).
20D. Mousanezhad, S. Babaee, R. Ghosh, E. Mahdi, K. Bertoldi, and A.

Vaziri, Phys. Rev. B 92, 104304 (2015).

21A. A. Maznev, Phys. Rev. B 78, 155323 (2008).
22I. A. Veres, D. M. Profunser, A. A. Maznev, A. G. Every, O. Matsuda, and

O. B. Wright, New J. Phys. 14, 123015 (2012).
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1. WAVE PROPAGATION ANALYSIS

The propagation of elastic waves within cross-linked random fiber networks is investigated numerically by
considering 2D periodic unit cells spanned by the lattice vectors a1 = [a, 0] and a2 = [0, a], as shown in Fig.
S1(a).

FIG. S1: (a) 2D periodic unit cell spanned by the lattice vectors a1 = [a, 0] and a2 = [0, a]. (b) Corresponding point
lattice and first Brillioun zone (green area) in the reciprocal space.

In order to obtain the dispersion relation of the propagating waves in the random fiber networks, frequency
domain wave propagation analysis are performed on the unit cells. Bloch-type boundary conditions of the form

u(x + r) = u(x) exp(ik · r), (S1)

are applied to the edges of the unit cell, where u and x denote the displacement and position of a point. Moreover,
r is the distance between each pair of nodes periodically located on the boundaries and k is Bloch-wave vector.
Since most commercial finite element packages do not support the complex-valued displacements introduced by
(S1), following Aberg and Gudmundson [1], we split any complex-valued spatial function φ(x) into a real and an
imaginary part

φ(x) = φ(x)re + iφ(x)im. (S2)

The problem is then solved using two identical finite element meshes for the unit cell, one for the real part and
the other for the imaginary part, coupled by

ure(x + r) = ure(x) cos(k · r)− uim(x) sin(k · r), (S3)

and

uim(x + r) = ure(x) sin(k · r) + uim(x) cos(k · r). (S4)

Note that Eqs. (S3) and (S4) are implemented into Abaqus/Standard via multi-point constraints [2].
Focusing on the propagation of small amplitude waves, we then calculate the dispersion relation ω = ω(k) using

the frequency domain perturbation method. In particular, the dispersion band diagram reported in Fig. 3(a) is
obtained by choosing k = κxex and considering fifty uniformly-spaced points in the interval κx ∈ [0, π/a].
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2. DENSITY OF VIBRATIONAL STATES (DOS) FOR NETWORKS OF SPRINGS AND BEAMS

In Fig. S2 we report the density of vibrational states (DOS) for a 2D cross-linked random fiber network (beam
network - Fig. S2(a)), and the corresponding spring network (Fig. S2(b)) with ρ̄ =25 and r̄ =0.004. The results
are calculated based on a total of 2500 k-space points uniformly-distributed across the entire first Brillouin zone
and are normalized by the number of k-space points. While the response of the spring network is dominated by a
peak at ω ∼ 0, for the fiber beam network the response is characterized by several peaks at non-zero frequencies.

FIG. S2: Density of vibrational states for (a) a 2D cross-linked random fiber network (beam network), and (b) the
corresponding spring network. Both networks are characterized by ρ̄ =25 and r̄ =0.004.
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3. GROUP VELOCITIES

In Fig. S3 we report the first dispersion band (ω̄) and the evolution of the group velocity (dω̄/dκ̄x) as a function
of the wave vector for two random networks characterized by the same values of ρ̄ and r̄ (ρ̄ = 25 and r̄ =0.0004),
but different lengths of the longest fiber-segment (L̄max = 0.55 and 0.9 in Figs. S3(a) and S3(b), respectively).
In the plots we also show the transition wavelengths λ̄∗ and λ̄

′
.

As described in the main text, λ̄∗ is defined as the wavelength at which the band flattens. Therefore, we find
that dω̄/dκ̄x sharply decreases to zero at λ̄∗.

Moreover, our analysis indicates that the sharp transition at λ̄∗ is preceded by another transition at λ̄
′
, at

which the degree of non-affinity 4A gradually increases (note that λ̄
′

is defined as the wavelength for which
∂(4A)/∂λ̄ = 0.2% - see Fig. 3(b) in the main text). Importantly, the results reported in Fig. S3 reveals that
at λ̄

′
the dispersion curve starts deviating from linearity (as dω̄/dκ̄x starts deviating from a constant value - see

insets in Fig. S3), so that this transition defines the threshold below which the fibrous network behaves as a
dispersive wave medium.

FIG. S3: First dispersion band (ω̄) and the evolution of the group velocity (dω̄/dκ̄x) as a function of wave vector for two
random networks characterized by ρ̄ = 25 and r̄ =0.0004, and different lengths of the longest fiber-segment ((a) L̄max =

0.55 and (b) L̄max = 0.9). The insets show the zoom-in views of dω̄/dκ̄x in the vicinity of λ̄
′
.
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4. DYNAMIC RESPONSE FOR FINITE-SIZE RANDOM FIBER NETWORKS

In this study we investigate the dynamic response of 2D random fiber networks by focusing on a sufficiently
large unit cell and applying Bloch-type boundary conditions. To clarify the effect of such quasi-periodic boundary
conditions, here we consider 2D random fiber networks of finite-size and calculate their steady-state dynamic
linearized response to harmonic excitation. In this set of analyses, we excite the network by applying an harmonic
displacement (i.e. Ain cos(ωt)) to all the nodes on the left edge of the model and calculate the displacement field
distribution (i.e. deformation modes) over the frequency ranges of interest.

In Fig. S4 we report the deformation modes for different values of ω for the same network shown in Fig. 1
of the main text (characterized by ρ̄ =25 and r̄ =0.004) when considered as a finite-size domain. The results
indicate that in the low-frequency (i.e. in the long wavelength limit) the vibrations are diffuse through the system
(see snapshot in Fig. S4 for ω̄ = 1.3 × 10−3), as predicted by the Bloch modes of the same periodic network
for λ̄ = 100 reported in Fig. 1(d) of the main text. However, as the resonance frequency of the longest fiber
(ω̄resonance = 12.0 × 10−3) is approached, the deformation starts to be gradually localized within the longest
fiber-segment, as highlighted by the red dashed circle in Fig. S4(b). For ω̄ = ω̄resonance = 12.0 × 10−3 (i.e. at
the resonance frequency of the longest fiber) the vibrations are fully localized within the longest fiber-segment
(see fiber with maximum displacement highlighted by the red ellipse in Fig. S4(c)). Finally, the localization is
weakened as the frequency gets further away from ω̄resonance.

In summary, our finite-size results are in good agreement with those obtained by applying Bloch-type boundary
conditions (see Bloch modes reported in Fig. 1(d) of the main text for the same network), validating the numerical
approach used in this study.

FIG. S4: Steady-state response of a finite size random network with ρ̄ =25 and r̄ =0.004. Deformation modes are shown
at different excitation frequencies: (a) ω̄ = 1.3×10−3 (low frequency), (b) ω̄ = 11.7×10−3 (in the vicinity of the resonance
frequency of the longest fiber), (c) ω̄ = ω̄resonance = 12.0 × 10−3 (at the resonance frequency of the longest fiber) and (d)
ω̄ = 12.3 × 10−3 (in the vicinity of the resonance frequency of the longest fiber). The red dashed ellipses highlight the
deformation of the longest fiber.
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