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Locally resonant band gaps in periodic beam lattices by tuning connectivity
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Lattice structures have long fascinated physicists and engineers not only because of their outstanding
functionalities, but also for their ability to control the propagation of elastic waves. While the study of the
relation between the connectivity of these systems and their static properties has a long history that goes back to
Maxwell, rules that connect the dynamic response to the network topology have not been established. Here, we
demonstrate that by tuning the average connectivity of a beam network (Z), locally resonant band gaps can be
generated in the structures without embedding additional resonating units. In particular, a critical threshold for Z
is identified, far from which the band gap size is purely dictated by the global lattice topology. By contrast, near
this critical value, the detailed local geometry of the lattice also has strong effects. Moreover, in stark contrast
to the static case, we find that the nature of the joints is irrelevant to the dynamic response of the lattices. Our
results not only shed new light on the rich dynamic properties of periodic lattices, but also outline a new strategy

to manipulate mechanical waves in elastic systems.
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The topology of structures comprising an interconnected
network of elastic beams can be effectively described by
the coordination number (Z), which is defined as the average
number of connections at joints. From a static point of view,
reducing Z makes the structure less rigid until a critical
threshold is reached, below which deformation modes of zero
energy emerge [1-5]. A global stability criterion that purely
depends on z was first determined by Maxwell for pin-joined
lattices comprising springlike ligaments [1], and then modified
to account for the nature (pin or welded) of the joints [6], the
bending stiffness of the struts [7,8], self-stresses [9], dislo-
cation defects [10], collapse mechanisms [11], and bound-
ary modes [12-15]. In recent years, the dynamic response
of periodic lattices has also attracted considerable interest
[16-19] because of their ability to tailor the propagation
of elastic waves through directional transmissions [20-23]
and band gaps (frequency ranges of strong wave attenua-
tion) [21-24]. Though several studies have shown that the
wave propagation properties of periodic lattices are highly
sensitive to the architecture of the network [20-24], a global
criterion connecting the frequency and size of band gaps to the
lattice topology is still not yet in place.

In this Rapid Communication, we study the effects of
both the global coordination number (Z) and the local
geometric features of periodic networks made of slender
beams with finite bending stiffness on the propagation of
elastic waves. We consider two-dimensional periodic lattices
made of Euler-Bernoulli beams supporting both bending and
axial deformations. Each beam is made of a linear elastic
isotropic material, has length L, mass per unit length m,
bending stiffness EI, axial stiffness E A, and is characterized
by a slenderness ratio A = L/EA/(EI) = 20. However, it
is important to note that all results presented in the Rapid
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Communication are not affected by this specific choice of
A and that identical findings can be obtained for a network
of beams characterized by any value of A > 10. To study
the propagation of small amplitude elastic waves in such
lattices, we perform frequency-domain wave propagation
analysis [26,27] within the finite element (FE) framework
using the commercial package ABAQUS/STANDARD and Bloch-
type boundary conditions are applied to the edges of the
unit cell. We then solve the frequency-domain wave equation
for wave vectors in the Brillouin zone using a perturbation
method [25].

We start by investigating the propagation of elastic waves
in the triangular lattice (characterized by connectivity 7 = 6)
with both pin and welded joints. Figures 1(a) and 1(b) show
the band structures in terms of the normalized frequency

®/Wyerded ANd @/ Wpin, Where wyeided = 22.4y/ ET/(mL*) and

Wpin = n2JEI /(mL*) are the first natural frequency of the
single beam with both ends fixed (welded) and free to rotate

(pin), respectively. As previously predicted [21], the dispersion
relations indicate that the structure is characterized by a band
gap. However, while such band gap is believed to be due
to Bragg scattering, our analysis surprisingly indicates that
it is generated by localized resonance, a fact that has not
been clearly pointed out before. This important observation
is clearly supported by the fact that, regardless of the type
of joints, the band at the lower edge of the band gap is
completely flat [see red lines in Figs. 1(a) and 1(b)] and located
in correspondence of the first natural frequency of the beams
(i.e., ®/wyeidea = 1 and @/wpin = 1). Furthermore, the Bloch
mode shapes of the flat band at the high-symmetry points G, X,
and M reported in Figs. 1(c) and 1(d) confirm that each beam
vibrates independently according to its natural mode. As a
result, the vibration energy is localized by the single-beam
resonant mode, preventing the propagation of the elastic
waves. In previous studies, the local resonance mechanism
was typically realized in heterogeneous systems comprising
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FIG. 1. (Color online) Band structures of triangular periodic 2 2
beam lattices. (a) Dispersion relation of the triangular lattice with ., 3
welded joints. (b) Dispersion relation of the triangular lattice with (—E %
pin joints. The lattice and unit cells with both welded and pin joints £ . £ . A /
are shown as insets. Band gaps are shown as gray-shaded areas and Zz G X M G Y M Z G X M G Y M

the flat bands at their lower edge are highlighted in red. The Bloch
modes of the flat band (the third mode) at high symmetry points of
the Brillouin zone (G, X, and M) [25] are shown in (c) and (d) for
the case of welded and pin joints, respectively. A plot presenting
both band structures normalized by the same factor is included in the
Supplemental Material [25].

two [27-29], three [30-32], or four [33] different constituent
materials. Remarkably, in periodic triangular lattices, even
with a single material and building block, local resonances
can be exploited to generate band gaps, providing a foundation
for the design of a new class of systems to manipulate the
propagation of elastic waves. Furthermore, our results also
demonstrate that, in order to attenuate the propagation of
elastic waves through localized resonances, it is not necessary
to embed additional resonating components [23,24,34-42]
within the beam lattices. Such single-building-block and
single-material system with locally resonant band gap has been
previously realized in a one-dimensional setup only [43].
Having demonstrated that the triangular beam lattice is
characterized by a locally resonant band gap regardless of the
type of joints, we now investigate the dynamic response of the
hexagonal lattice, which has the same lattice symmetries of
the triangular lattice but a much smaller coordination number
(i.e., Z = 3). As shown in Fig. 2(a), the hexagonal lattice with
welded joints also exhibits an almost flat band at the resonant
frequency of the beams (i.e., ® = wyelded). HOWever, in this
case the flatband resonant mode does not open a band gap
regardless of the types of joints (identical behavior is found
in the case of pin joints [25]). By comparing to the triangular
lattice, we note that the absence of the locally resonant band
gap in the hexagonal lattice could arise either because of the
low connectivity number Z or the different angle o between
connected beams. To further inspect the contribution of the
latter factor, by keeping 7 = 3 and varying  from 2 /3to /3,
we construct periodic lattices that are topologically equivalent
to the hexagonal lattice and study their dynamic response.
As clearly shown in Figs. 2(b)-2(d), though the phononic
band structure evolves significantly as o changes, no band
gap is observed. It is especially important to note that for

Reduced Wave Vector,k Reduced Wave Vector,k

FIG. 2. (Color online) Band structure of periodic lattices with
Z=3 and welded joints. (a) Hexagonal lattice (o = 2m/3);
(b) topologically equivalent lattice with o« = 7r/2; (c) topologically
equivalent lattice with @ = 57/12; and (d) topologically equivalent
lattice with o = /3. The lattice structures and unit cells used in
the calculations are shown as insets. Note that for « = 7/3 the
arrangement of the beams is the same as for the triangular lattice,
but the connectivity is still Z = 3. In fact, although for clarity the
green-colored joints are drawn separately in the unit cell of (d), they
are positioned at the same spatial location. No locally resonant band
gap is found for any of the configurations. Results for the same lattices
with pin joints are provided in the Supplemental Material [25].

o« = /3 the beams are arranged exactly as in the triangular
lattice. However, the network topology is different, as only
three, instead of six, beams connect to each other at each
joint [see inset in Fig. 2(d)]. Thus, these results conclusively
show that the global topology of the network described by
the coordination number plays a crucial role in determining
the existence of locally resonant band gaps. In addition, our
analysis indicates that this conclusion is not affected by the
nature of the joints (additional results for pin joints are included
in the Supplemental Material [25]).

Next, to further demonstrate the role of the coordination
number on the formation of locally resonant band gaps, we
investigate a number of periodic beam lattices with3 < z < 6,
as shown in Fig. 3(a). These hybrid lattices are generated
by considering enlarged unit cells of the triangular lattice
and randomly removing a number of joints and all beams
attached to them. Alternatively, lattices with Z close to 3
are constructed starting with an enlarged unit cell of the
hexagonal lattice and filling some randomly chosen hexagons
with six triangles. For each value of Z multiple configurations
are analyzed and, since these periodic lattices do not share
the same spatial symmetry of the triangular and hexagonal
lattices, additional Bloch vectors are considered to determine
the presence of band gaps [25]. The results are summarized in
Fig. 3(b), where the width of the band gap Aw is reported
for different hybrid lattices with 3 < Z < 6. Each circular
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FIG. 3. (Color online) Dynamic response of periodic lattices
with 3 <Z < 6. (a) Representative unit cells constructed either
starting from the triangular lattice and removing a number of
randomly chosen nodes or starting from the hexagonal lattice and
filling a number of randomly chosen hexagons with six triangles. For
two unit cells with Z =4.615 the band structures are also shown.
(b) Relation between normalized average band gap size Aw/®yelded
and coordination number Z. The band gap size is computed as the
difference between the upper and lower edges of the gap. The error
bar at each data point indicates the band gap range of frequencies
spanned by all different configurations characterized by the same
value of Z.

marker in the plot represents the average band gap width
of all configurations considered for that particular value of
7, while the corresponding error bar spans the range of
observed Aw. Interestingly, for lattices with low connectivity
[i.e., 3.0 < 7 < 3.7—yellow region in Fig. 3(b)], no locally
resonant band gap is observed at @ = Wyelded-

In contrast, when 4.6 < 7 < 6.0 [red region in Fig. 3(b)],
all considered lattices possess a locally resonant band gap. In
particular, for structures with a very high average connectivity
(i.e., Z > 5.5), the band gap width Aw is linearly correlated
to the coordination number Z. On the other hand, if 4.6 < 7 <
5.7, although a locally resonant band gap always exists, its
size is not solely determined by Z, but also affected by the
specific arrangement of the beams within the unit cell. Finally,
when 3.7 < 7 < 4.6 [orange region in Fig. 3(b)], depending
on the local geometric features, the lattice may either have or
not have a locally resonant band gap [25].

The results presented in Fig. 3 not only confirm that
the global topology of the lattice is the leading factor in
determining the existence of a locally resonant band gap, but
also indicate that for an intermediate range of Z the detailed
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FIG. 4. (Color online) Normalized band gap width Aw/w, for
rhombic lattices that are topologically equivalent to the square lattice.
The lattice structures and joint types used in the calculations are
shown as insets. The results for lattices with both welded and pin
joints are reported. Note that w, = wyeiged and w, = wpi, for lattices
with welded and pin joints, respectively.

geometry of the lattice plays an important role. To further
understand the effect of the arrangement of the beams in
lattices characterized by intermediate values of z, we also
study rhombic lattices with 7 = 4 and investigate the effect of
the angle 6 between the beams at the joints. We start from the
case of 0 = m /2, the well-known square lattice, which does
not have a locally resonant band gap [21]. However, as shown
in Fig. 4, when the angle 6 is progressively reduced, a locally
resonant band gap appears for rhombic lattices. Interestingly,
we also find that a maximum band gap width is achieved
for & = 561 /180, regardless of the joint types. Therefore, our
results indicate that, when extended to the dynamic response of
the beam lattices, Maxwell’s rule can be relaxed. In fact, while
Z = 4 represents the critical threshold below which a lattice
made of springlike ligaments becomes unstable, the rhombic
lattices at the threshold can still possess a locally resonant band
gap by carefully choosing the angle 6.

In summary, we have numerically investigated the dynamic
response of periodic beam lattices. We have found that,
in highly connected lattices, the beams themselves act as
mechanical resonators, enabling the generation of locally
resonant band gaps. Similar to the observation reported for the
effective static properties of lattices [1,5,6,8,13,14], our results
indicate that the presence and width of the locally resonant
band gap depends on the coordination number (i.e., average
lattice connectivity, z). A reduction of 7 results in a decrease
of the bandwidth, until a critical threshold is reached, below
which the band gap completely closes. On the other hand, we
have found that, different from the ground state static proper-
ties [6,7,44], the dynamic response of the system is not sensi-
tive to the type of joints. Under dynamic loading, the lattices
are in an excited state characterized by a finite level of energy,
and the response is not qualitatively affected by the bending
stiffness of the joints. Moreover, we have also shown that
the average connectivity is not enough to predict the dynamic
characteristics of a system when Z is near the critical threshold.
In fact, we identified a transition region where the dynamic
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response of the lattices is sensitive to the detailed architecture
of the network. Our work paves the way towards the design of
anew class of systems made of identical elastic beams that can
effectively attenuate the propagation of elastic waves at low
frequencies by exploiting local resonances. As an example,
highly connected periodic lattices with beam length ~40 mm,
thickness ~2.0 mm, which are made of an acrylic polymer
that can be easily 3D-printed (Youngs modulus ~1.14 GPa,
density ~1050kg/m®), exhibit a locally resonant band gap
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in the audible frequency range (i.e., at around 590 Hz and
1340 Hz for the case of pin and welded joints, respectively).
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CALCULATION OF DISPERSION RELATIONS
Periodic lattices and unit cells

The propagation of elastic waves in beam lattices is investigated numerically by considering 2D periodic lattices
of infinite extent and focusing on their unit cell (i.e. a repeating geometric unit). The unit cells used in this study
are shown in Fig. S1. Note that for hexagonal (Fig. S1b) and rhombic (Fig. Slc) lattices, the unit cells used in the
calculations are not the minimum repeating units. In both cases an enlarged rectangular unit cell is chosen to be
able to investigate all topologically equivalent lattices (constructed by varying the angles between connected beams)
using the same computational setup.
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Figure S1: Periodic lattices (left column) and their corresponding unit cells (central column), Brillioun zones
(right column) and irreducible Brillioun zones (yellow shaded region) used in this study for: a, Triangular lattice;
b, Hexagonal lattice and its topologically-equivalent variants; and ¢, Square lattice and its topologically-equivalent variants
(rhombic lattices).



Frequency-domain analyses and Brillioun zones

In order to obtain the dispersion relations of the propagating waves in the periodic lattices, frequency domain
analyses are performed via finite element (FE) simulations using the commercial software ABAQUS/STANDARD.
Preliminary calculations were performed using using both Euler-Bernoulli beam elements (ABAQUS element type
B23) and Timoshenko beam elements (ABAQUS element type B21). Since the two sets of simulations yielded
identical results, we chose to use Euler-Bernoulli beam elements for all the simulations. Bloch-wave [1] boundary
conditions are applied to the boundaries of the unit cells:

u(x +r) = u(x)e' k. (S1)

where u, x, r and k denote the degrees of freedom vector, position coordinates, spatial periodicity in the lattice
configuration and bloch-wave vector, respectively. Note that for two-dimensional beam elements the vector u has
three components, corresponding to two displacements (Ul and U2) and one rotation (UR3).

Focusing on the propagation of small-amplitude waves, we solve the linearized wave equation by using a perturba-
tion method to obtain the dispersion relations w = w(k). Due to the translational symmetry of the lattices, we only
need to study w(k) for k vectors in the first Brillouin zone [2, 3]. Moreover, this domain can be further reduced
by taking advantage of rotational, reflectional and inversional symmetries of the Brillouin zone. This allows us to
define the irreducible Brillouin zone (IBZ) [4], shown as the yellow triangle GXM in Fig. Sla and yellow rectangles
GXMY in Figs. S1b and Slc. More details of mathematical formulation and numerical implementation are given in
our previous publications [5, 6].

The phononic bandgaps are identified by checking all eigen-frequencies w(k) for k vectors on the perimeter of the
IBZ. The bandgaps (i.e. range in frequencies for which the propagation of waves is barred) are given by the frequency
ranges within which no w(k) exist. Numerically, a discrete set of k vectors on the IBZ perimeter needs to be chosen in
the band-gap calculation. For the simulations presented in this paper, twenty uniformly-spaced points on each edge
of the IBZ are used for the purpose of identifying band-gaps.
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Figure S2: Band structures of a triangular periodic beam lattices with welded (dashed red lines) and pin
(continuous blue lines) joints. The frequency bands in the plot are normalized by wo = wpin /7.



ADDITIONAL RESULTS
Triangular lattice — comparison between pin and welded joints

The sound speed in the long-wavelength limit (i.e. the initial slope of the bands originated from G, the center of
the first Brillouin zone) is directly correlated to the static homogenized stiffness of the structure. However, the slopes
of the bands in Figs. la and 1b in the main article should not be compared directly for that purpose, since they are
plotted using different normalization factors (i.e. the natural frequencies of a single beam with welded-welded and
pin-pin boundary conditions, respectively). In fact, wyeiged and wy;, differ by a factor of 22.4/(3.14)* = 2.27. To
facilitate the direct comparison of the band structure reported in Figs. la and 1b, we normalized the band structure
for the case of both welded and pin junctions using the same factor, wy = wpin /71'2 = wWyelded/22.4. These results are
reported in Fig. S2.

Hexagonal lattice and its topologically equivalent lattices with pin joints

In the main text we demonstrated that the dynamic response of the hexagonal lattice with welded joints is char-
acterized by no locally resonant bandgap (see Fig. 2a). Furthermore, we showed that no band gap exists in periodic
lattices with welded joints that are still characterized by Z = 3, but for which the angle between connected beams, «,
varies from 27 /3 to 7/3 (see Figs. 2b, 2¢ and 2d).

Here, we report the band structures for the same lattices as those considered in Fig. 2 of the main text, but with
pin joints. The results shown in Fig. S3 indicate that the flat-band resonant mode does not open a bandgap in this
family of lattices even in the case of pin joints, confirming that the nature of the joints does not significantly affect the
presence or absence of locally resonant bandgaps. However, it is important to note that the nature of the joints affects
the static response of the system. In fact, the dispersion diagrams of the lattices with pin joints are characterized by
a flat band at zero frequency ! (indicated by the green lines in Fig. S3). This flat band at w = 0 corresponds to a
"floppy” [8-12] or ”soft ” [13, 14] mode predicted by the Maxwell’s Rule [7] and describes the ground state behavior
of the lattice. Essentially, the existence of these zero-energy modes indicates that the lattice is not stable in a static
sense and will collapse under infinitesimal perturbations. On the other hand, the full dispersion relation, including
the ”elevated flat bands” at w/wp, = 1, defines the ezcited state response of the lattice under finite-energy dynamic
loading. Interestingly, our results indicate that, differently from the ground state behavior, the excited state behavior
of the lattices is not significantly affected by the nature of the joints.

1 Note that such zero-frequency band is not present in the dispersion relation of a triangular lattice with pin joints (see Fig. 1b of the
main text), since in that case the network is stable according to Maxwell’s Rule [7].



pin

3
3
Y
=
g
o
2
w
o
i

© 05
o E
pin joints 5
=4

a ‘ ‘ ‘

G X M G Y M
Reduced Wave Vector,k

pin

— —_— _— 3
.y == 3 15k | .
—_— E — E —_— % ;IJ\}\
et o e g
L H |- £ r
_____ pin joints g T i
v —" = L i
% M

X M G Y
Reduced Wave Vector,k

@

H{
Ly
71 :
1 1 >
1 : %
: 1 8_
[
I
e e}
) O DOUN
{_} { pin joints g 0.5} .
\ L] 5
4
0 - | . |
G X M G Y M
Reduced Wave Vector,k
£
o
g
oy
;o
[
o |
g
w
o
(5
N
pin joints g 05
S
=z
OG G Y M

X M
Reduced Wave Vector,k

Figure S3: Band structures of periodic lattices with z = 3 and pin joints. The lattice structures and unit cells used
in the calculations are shown on the left. a, Hexagonal lattice (a« = 27/3); b, Topologically equivalent lattice with o = 7/2;
¢, Topologically equivalent lattice with o = 57/12; and d, Topologically equivalent with o = 7/3. Note that the arrangement
of the beams in d is the same as in the triangular lattice, but the connectivity is still Z = 3. In fact, although for clarity the
green-colored joints are drawn separately in the unit cell of d, they are positioned at the same spatial location. No locally
resonant bandgap is found for any of the configurations. The zero-frequency floppy modes are highlighted as green lines. Results
for the same lattices with welded joints are provided in the main text.



Finally, it is worth noting that the band structures of a periodic lattices with Z = 3 and o = 27/3 (i.e. hexagonal
lattice, see Fig. S3a) and oo = 7/3 (see Fig. S3d) are identical. In fact, our numerical calculations show that for any
B in the range [0, 7/2] the band structure of a periodic lattice with o = 7/2 + 3 is the same as that of a lattice with
o =7/2 — . More examples highlighting this symmetry are provided in Fig. S4.

oa=m/2+m/36

.

Q

pin

ol

Normalized Frequency, ® / @
o
o

OG X M G Y
Reduced Wave Vector,k

a=m/2+7m/18

Vol

1 f%
0.5

. )
OG X M G Y M
Reduced Wave Vector k

(o

pin

Normalized Frequency,® / ®

o=n/2+m/9

o

pin

Normalized Frequency, ® / @

pin

Normalized Frequency, ® / ® .

o=n/2-n/36
2,
1.5>j

0.5]

OG X M G Y
Reduced Wave Vector,k

o=m/2-7/18

2|
1.5/

.
OG X M G Y M
Reduced Wave Vector k

o=n/2-7/9

85.

s 15

=

2

o

3

g 1

w

il

[0}

S

T 0.5 ‘\[ q

E

o

-
o . |
G X M G Y

Reduced Wave Vector,k

o

o=m/2+51/36

pin

0.5

Normalized Frequency,®/ @

.
OG X M G Y
Reduced Wave Vector,k

pin

Normalized Frequency, ® / o

pin

Normalized Frequency,®/ @

W
0.5, ‘V( .
G X M G Y

Reduced Wave Vector,k

a=n/2-51/36

o L L

G X M G Y
Reduced Wave Vector,k

Figure S4: Symmetry in the band structures of periodic lattices with z = 3 and pin joints. All results are for

pin-jointed lattices that are topologically equivalent to the hexagonal lattice.

Each row shows the dispersion relations for

lattices with « = 7/2 + 8 (left column) and o = 7/2 — 8 (right column). In particular, we report results for with a, 3 = m/36;
b, 3 =7/18; ¢, 8 =7/9; and d, § = 57/36. The zero-frequency floppy modes are highlighted as green lines.



Periodic lattices with 3 <z <6

To better understand the role of the coordination number on the formation of locally resonant bandgaps, we
investigated the dynamic response of several periodic beam lattices with average connectivity 3 < zZ < 6 comprising
an array of triangles and hexagons 2. While in Fig. 3-b of the main text we summarized the results by reporting the
evolution of the width of the bandgap Aw as a function of the coordination number Z, here we show the dispersion
relations for some of these lattices.

We note that, in general, these hybrid lattices do not possess rotational, reflectional and inversional symmetries
and that only the time reversal symmetry [15] is guaranteed, yielding;:

w(k) = w(—k). (S2)

Therefore, Bloch vectors spanning half of the Brillouin zone need to be considered to construct the band structure.
In practice, we calculate w(k) for 21 x 21 different k vectors in half of the Brillouin zone and use the symmetry
argument (Eq. (S2)) to map the results to the other half.

In Figs. S5, S6 and S7 we show the band structures for periodic lattices with z = 3.36, Z = 4.615 and z = 5.143,
respectively. For z = 3.36 no locally resonant bandgap is observed (see Fig. S5). Differently, for z = 3.36 both
configurations with (see Fig. S6-top) and without (see Fig. S6-bottom) locally resonant bandgap are found. Finally,

for the case of high average connectivity such as z = 5.143 all considered lattices possess a locally resonant bandgap
(see Fig. S7).
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Figure S5: Band structure for a periodic lattice with average connectivity z = 3.36.

2 Note that the average connectivity can be easily calculated as the ratio between twice the total number of beams and the total number
of nodes of the unit cell.
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Figure S7: Band structures for periodic lattices with average connectivity z = 5.143.



Rhombic lattices

In the main text we show that in rhombic lattices a locally resonant bandgap appears by progressively reducing
the angle 6 between the beams, regardless of the type of joints (see Fig. 4 of the main text).

Here, we show the band structures for rhombic lattices with 6 = 7/18 (see Fig. S8-a), # = 7/6 (see Fig. S8-b),
0 = m/3 (see Fig. S8-c) and 0§ = m/2 (square lattice - see Fig. S8-d). Both lattices with welded and pin joints are
considered. Note that for the cases of pin joints the lattices are characterized by a zero-frequency mode in the G — M
direction (see green lines in Fig. S8), since the structures are isostatic and can be infinitesimally deformed without
incurring any energy cost.
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Figure S8: Dispersion relations of rhombic lattices (Z = 4) with welded and pin joints. The zero-frequency floppy
modes in the G-M direction are highlighted as green lines. The bandgaps are highlighted as orange color-shaded area. a,
0 =7/18; b, 0 =7/6; ¢, 0 = w/3; and d, 6 = 7/2 (square lattice)
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