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We report a new type of phononic crystals with topologically nontrivial band gaps for both longitudinal
and transverse polarizations, resulting in protected one-way elastic edge waves. In our design, gyroscopic
inertial effects are used to break the time-reversal symmetry and realize the phononic analogue of the
electronic quantum (anomalous) Hall effect. We investigate the response of both hexagonal and square
gyroscopic lattices and observe bulk Chern numbers of 1 and 2, indicating that these structures support
single and multimode edge elastic waves immune to backscattering. These robust one-way phononic
waveguides could potentially lead to the design of a novel class of surface wave devices that are widely
used in electronics, telecommunication, and acoustic imaging.
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Topological states in electronic materials, including the
quantum Hall effect [1] and topological insulators [2,3],
have inspired a number of recent developments in pho-
tonics [4,5], phononics [6–9], and mechanical metamate-
rials [10–13]. In particular, in analogy to the quantum
anomalous Hall effect [14], one-way electromagnetic
waveguides in two-dimensional systems have been realized
by breaking time-reversal symmetry [15–18].
Very recently, unidirectional edge channels have been

proposed for elastic waves using Coriolis force in a
noninertial reference frame [19], but such a rotating frame
is very difficult to implement in solid state devices.
Moreover, one-way propagation of scalar acoustic waves
has also been proposed by introducing rotating fluids
[20–22]. However, it is important to recognize that elastic
waves in solids have both transverse and longitudinal
polarizations, while acoustic waves in fluids are purely
longitudinal. As a result, it is challenging to achieve
topological protection for elastic waves on an integrated
platform.
Here, we present a robust strategy to create topologically

nontrivial edge modes for both longitudinal and transverse
polarizations in a solid medium. In particular, we introduce
gyroscopic phononic crystals, where each lattice site is
coupled with a spinning gyroscope that breaks time-
reversal symmetry in a well-controlled manner. In both
hexagonal and square lattices, gyroscopic coupling opens
band gaps that are characterized by Chern numbers of 1 and
2. As a result, at the edge of these lattices both single-mode
and multimode one-way elastic waves are observed to
propagate around arbitrary defects without backscattering.
To start, we consider a hexagonal phononic crystal

with equal masses (m2 ¼ m1) connected by linear springs
[red and black rods in Figs. 1(a) and 1(b)]. The resulting
unit cell has 4 degrees of freedom specified by the

displacements of m1 and m2 (U ¼ ½um1
x ; um1

y ; um2
x ; um2

y �).
Consequently, there are a total of four bands in the band
structure [Fig. 1(c)]. Note that this is the minimal number of
bands required to open a complete band gap, since the first
two elastic dispersion bands are pinned at zero frequency.
The phononic band structures are calculated by solving the
dispersion equation [23]

½KðμÞ − ω2M�U ¼ 0 ð1Þ

for wave vectors μ within the first Brillouin zone. Here, ω
denotes the angular frequency of the propagating wave and
M ¼ diagfm1; m1; m2; m2g is the mass matrix. Moreover,
K is the 4 × 4 stiffness matrix and is a function of the Bloch
wave vector μ. The band structure of this simple lattice is
shown in Fig. 1(c). As expected, in the long wavelength
regime (near the G point) the first and second bands
correspond to transverse and longitudinal modes, respec-
tively, while for short wavelengths (near K points) all
modes are found to have mixed polarization (detailed
analysis of the modal polarization is given in
Supplemental Material [24]). Moreover, we observe a
quadratic degeneracy between the third and fourth bands
at the center of the Brillouin zone and a complete gap
between the second and third bands due to the lack of
inversion symmetry. However, this gap is topologically
trivial, since time-reversal symmetry is not broken and the
Chern numbers of the bands are all zero.
In order to break time-reversal symmetry, we introduce

gyroscopic coupling [25,26,30] and attach each mass in the
lattice to the tip of the rotational axis of a gyroscope, as
shown in Fig. 1(d). Note that the other tip of the gyroscope
is pinned to the ground to prevent any translational motion,
while allowing for free rotations. Because of the small-
amplitude in-plane waves propagating in the phononic
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lattice, the magnitude of the tip displacement of the each
gyroscope is given by

Utip ¼ h sin θ ≈ hθ ¼ hΘeiωt for jΘj ≪ 1; ð2Þ
where h and θ denote the height and nutation angle of
the gyroscope [Fig. 1(d)] and Θ is the amplitude of the
harmonic change in θ. Interestingly, the coupling between
the mass in the lattice and the gyroscope induces an
in-plane gyroscopic inertial force perpendicular to the
direction of Utip [24,25,27]:

Fg ¼ �iω2αUtip; ð3Þ
where α is the spinner constant that characterizes the
strength of the rotational coupling between two

independent inertias in the 2D plane. As a result, the mass
matrix in Eq. (1) becomes

~M ¼ Mþ

0
BBB@

0 iα1 0 0

−iα1 0 0 0

0 0 0 iα2
0 0 −iα2 0

1
CCCA; ð4Þ

where α1 and α2 denote the spinner constants of the
gyroscopes attached to m1 and m2, respectively. We note
that the imaginary nature of the gyroscopic inertial effect
indicates directional phase shifts with respect to the tip
displacements, which breaks time-reversal symmetry.
We now consider the band structure of the gyroscopic

hexagonal lattice. Interestingly, we find that the original
band gap between the second and third bands first closes
into a Dirac cone at the K points and then reopens as we
gradually increase the magnitude of α1 and α2. In particular,
for α1 ¼ α2 ¼ 0.07m1 the gap is closed and a pair of Dirac
cones at K points emerges, while for α1 ¼ α2 ¼ 0.3m1 the
gap reopens, as shown in Fig. 1(f). We also note that this
topological transition at α1 ¼ α2 ¼ 0.07m1 is accompanied
by a band inversion [9] between the second and third bands
near the K points (the complete process of this topological
transition is shown in the Supplemental Material [24]).
Since each Dirac point carries a Berry phase of π and there
is a pair of Dirac cones in the first Brillouin zone [31], we
expect the total exchange of Berry curvature between the
two bands to be 2π, resulting in one chiral edge state in
the gap between the second and third bands. Similarly, we
also observe that the quadratic degeneracy found for the
ordinary lattice between the third and fourth bands at the
Brillouin zone center [see Fig. 1(c)] is opened into a full
band gap when gyroscopic coupling is introduced [see
Fig. 1(f)]. Since such a quadratic touching carries a 2π
Berry phase [32], there should be one chiral edge state in
the gap between the third and fourth bands. Importantly, the
fact that band gaps in Fig. 1(f) are topologically nontrivial
is confirmed by the nonzero Chern numbers labeled on the
bands (the calculations conducted to compute these topo-
logical invariants are detailed in the Supplemental Material
[24]). Therefore, in the frequency ranges of these nontrivial
band gaps, we expect gapless one-way edge states, whose
number is dictated by the sum of Chern numbers below the
band gap, in agreement with our intuitive arguments of
Berry phase.
To verify the existence of such one-way edge states, we

perform one-dimensional (1D) Bloch wave analysis on a
supercell comprising 20 × 1 unit cells, assuming free
boundary conditions for the top and bottom edges. In full
agreement with the bulk Chern numbers, the band structure
of the supercell shows one one-way edge mode on each
edge in both band gaps. For modes bound to the top edge
[Fig. 2(b)], the propagation can only assume negative group
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FIG. 1 (color online). Ordinary and gyroscopic phononic
crystals: (a) Schematic of the hexagonal lattice. The blue and
grey spheres represent concentrated masses m1 and m2 ¼ m1,
respectively. The red and black straight rods represent massless
linear springs with stiffness k1 and k2 ¼ k1=20, respectively. The
dashed cell is the primitive cell of the lattice. (b) Unit cell for the
ordinary (nongyroscopic) phononic crystal. (c) Band structure of
the ordinary (nongyroscopic) phononic crystal. The inset is the
Brillouin zone. (d) Schematic of a gyroscope with the top tip
pinned to a mass in the lattice. (e) Unit cell for the gyroscopic
phononic crystal. (f) Band structure of the gyroscopic phononic
crystal (α1 ¼ α2 ¼ 0.3m1) with the Chern numbers labeled on the
bulk bands. The frequencies are normalized by ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
.

PRL 115, 104302 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

4 SEPTEMBER 2015

104302-2



velocities [red solid lines with negative slope in Fig. 2(a)].
On the other hand, the modes bound to the bottom edge
[Fig. 2(c)] possess positive group velocities [blue dashed
lines with positive slope in Fig. 2(a)]. Since these edge
modes are in the gap frequency range where no bulk modes
may exist, they cannot scatter into the bulk of the phononic
crystal. Furthermore, their unidirectional group velocities
guarantee the absence of any backscattering and result in
the topologically protected one-way propagation of vibra-
tion energy.
To show the robustness of these edge states, we conduct

transient analysis on a finite sample comprising 20 × 20
unit cells with a line defect on the right boundary created
by removing twelve masses and the springs connected to
them [Fig. 3(a)]. A harmonic force excitation, F0e−iωt, is
prescribed at a mass site on the bottom boundary [red arrow
in Fig. 3(a)] with frequency within the bulk band gap
between the second and third bands (ω=ω0 ¼ 1.3). In Fig. 3
we plot snapshots of the velocity field at different time
instances, t=T0 ¼ 2, 12, 22, and 32, where T0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=k1

p
is the characteristic time scale of the system. Remarkably,
because of their topological protection, the edge modes
circumvent both the sharp corner and the line defect
without any reflection. We note that, although the results
presented in Fig. 3 are for a harmonic excitation with 45°
inclination (i.e., FðtÞ ¼ ½FxðtÞ; FyðtÞ� ¼ ½1; 1�F0e−iωt), the
one-way edge propagations are not affected by the direction
of the applied force (additional results are included in the
Supplemental Material [24]).
Next, we investigate the effect of the lattice geometry

and start with an ordinary square phononic crystal with
masses m1 connected by springs with elastic constant k1.
To make the lattice statically stable, we add an additional
mass m2 ¼ m1 at the center of each unit cell and connect
it to its four adjacent m1 masses by springs with elastic

constant k2 ¼ 2k1 [see Fig. 4(a)]. The band structure for
this lattice [shown in Fig. 4(b)] contains a pair of threefold
linear degeneracies among the first, second, and third
bands at the X points of the Brillouin zone. Note that
this type of degeneracy, consisting of a locally flat
band and a Dirac point, is known as the “accidental
Dirac point” or “Dirac-like cones” [33,34]. Interestingly,
was previously found to occur at the Brillouin zone
center and very sensitive to the system parameters, in
our lattice it robustly appears at the X points when
m1 ¼ m2. Upon the introduction of gyroscopic inertial
effects (α1 ¼ α2 ¼ 0.3m1), these threefold degenerate
points are lifted and a gap is created between the second
and third bands [Fig. 4(c)]. The Chern number of the two
bulk bands below the gap is two, predicting the existence
of two topological edge states. The presence of multimode
one-way elastic waves is consistent with the fact that the
Berry phase associated with such a three-band degeneracy
is 2π [35], resulting in a total exchange of the Berry
curvature of 4π when gapping two of these points
in the Brillouin zone [36]. In Figs. 4(d) and 4(e), we plot
the band structure of the corresponding 20 × 1 supercell,
highlighting two one-way edge modes and their modal
displacement fields.
To summarize, we demonstrated that gyroscopic pho-

nonic crystals can support topologically nontrivial gaps,
within which the edge states are unidirectional and immune
to backscattering. The transient analysis confirmed that
the propagations of such topological edge waves are robust

(a) (b) (c)

FIG. 2 (color online). Edge modes in gyroscopic phononic
crystal: (a) 1D band structure showing bulk bands (black dots)
and edge bands (colored lines). Red solid lines represent edge
modes bound to the top boundary, while blue dashed lines
represent edge modes bound to the bottom boundary. (b) Modal
displacement fields of top edge states with negative group
velocities. (c) Modal displacement fields of bottom edge states
with positive group velocities.
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FIG. 3 (color online). Transient response of a gyroscopic
phononic crystal consisting of 20 × 20 unit cells with a line
defect on the right boundary: Snapshots of the displacement field
at (a) t ¼ 2T0, (b) t ¼ 12T0, (c) t ¼ 22T0 and (d) t ¼ 32T0,
where T0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=k1

p
is the characteristic time scale of the

system. Starting from t ¼ 0, a time-harmonic excitation force
FðtÞ ¼ ½FxðtÞ; FyðtÞ� ¼ ½1; 1�F0e−iωt is prescribed at the site
indicated by the red arrow.
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against large defect and sharp corners. Moreover, we
showed, for the first time, the multimode one-way states
(Chern number ¼ �2) in phononic systems, opening more
avenues for the design of future topological waveguides
and devices. While in this study we developed a compre-
hensive framework for the design and analysis of
topological phononic crystals, we recently became aware
of a parallel effort in which time-reversal symmetry break-
ing in a gyroscopic system has been theoretically analyzed
and experimentally demonstrated [37].

Finally, we note that phononic crystals [38,39] and
acoustic metamaterials [40–44] that enable manipulation
and control of elastic waves have received significant
interest in recent years [23,45], not only because of their
rich physics, but also for their broad range of applications
[46–58]. Interestingly, the edge wave modes in phononic
crystals are important in many scenarios [59–62], including
vibration control [63] and acoustic imaging [54]. However,
most of the reported studies have focused on topologically
trivial surface waves that can be easily scattered or
localized by defects [59]. Therefore, the work reported
here could open new avenues for the design of phononic
devices with special properties and functionalities on
edges, surfaces, and interfaces.
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POLARIZATION CHARACTERISTICS

By calculating the dispersion relation for the lattices considered in this study, four Bloch modes (corresponding to
four bands) for each k vector are obtained. Each Bloch mode takes the vector form U = [um1

x , um1
y , um2

x , um2
y ], whose

components are complex numbers:

U1 = um1
x = um1

x,re + ium1
x,im, (S1)

U2 = um1
y = um1

y,re + ium1
y,im, (S2)

U3 = um2
x = um2

x,re + ium2
x,im, (S3)

U4 = um2
y = um2

y,re + ium2
y,im. (S4)

(S5)

The full expression of each vibrational mode in real space is then given by

Ũ = Re[U exp (ik · r− iωt)], (S6)

whose components can be rewritten as

Ũj = Re[Uj ] cos(Ω)− Im[Uj ] sin(Ω) = Aj cos(Ω +Bj), for j = 1, .., 4 (S7)

where Ω = k · r− ωt and the j-th components of the amplitude vector A and phase vector B are defined as

Aj =
√
Re[Uj ]2 + Im[Uj ]2, Bj = arctan

[
Im[Uj ]

Re[Uj ]

]
. (S8)

To better understand the polarization of the modes for the ordinary (non-gyroscopic) and gyroscopic hexagonal
lattices, in Figs. S1 and S2 we plot the model displacement trajectories of m1 and m2 by varying Ω in Eqn. (S7)
from 0 to 2π. Note that all the amplitudes have been normalized by max

j=1,2,3,4
(Aj).

In particular, in Fig. S1 we focus on the ordinary hexagonal lattice. As expected, in the long wavelength regime
(near G-point) all four bands are linearly polarized. The first and forth bands correspond to transverse modes, while
the second and third bands are longitudinal modes. Differently, for short wavelengths (near K-points) all modes are
found to have mixed polarization. Note that in the Figure we report the modal polarization for four different wave
vectors (GK , K1, K2 and K) pointing in the same (horizontal) direction, but with different wavelengths (as indicated
in the Brillouin zone on the top of the Figure). The results indicate a gradual transition from linearly polarized
modes to modes with mixed polarization as the wavelength decreases.

In Fig. S2 we then report the modal displacement trajectories for the gyroscopic hexagonal lattice. By comparing
the modal polarizations of the non-gyroscopic (Fig. S1) and gyroscopic (Fig. S2) hexagonal lattices, we can clearly
see that a band inversion between the 2nd and 3rd bands occurs at K-points, indicating a topological transition.
Furthermore, the modal mixing of the transverse and longitudinal polarizations for the 3rd and 4th bands near the
G-point (at the GK-point) also clearly indicates a topological transition occurring at the center of the Brillouin zone.
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FIG. S1: Modal polarization for the ordinary hexagonal lattice (i.e. α1 = α2 = 0): Note that blue solid lines indicate
polarization of m1, while the red dashed lines represent the polarization of m2. Results are reported for four k-space points on
the G-K line and the M point, as indicated in the Brillouin zone on the top of the figure.
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FIG. S2: Modal polarization for the gyroscopic hexagonal lattice with α1 = α2 = 0.3m1: Note that blue solid lines
indicate polarization of m1, while the red dashed lines represent the polarization of m2. Results are reported for four k-space
points on the G-K line and the M point, as indicated in the Brillouin zone on the top of the figure.
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BAND INVERSION IN GYROSCOPIC HEXAGONAL LATTICES

In Fig. S3 we report the evolution of the band structure for the gyroscopic hexagonal lattice considered in the main
text. The band structures show that for α = α1 = α2 > 0, a new topologically non-trivial gap between the 3rd and
4th bands is opened by lifting the quadratic degeneracy at G-point (the center of the Brillouin zone). Furthermore,
we see that the size of this gap increases monotonically with α.
Differently, the gap observed in the ordinary (non-gyroscopic) lattice between the 2nd and 3rd bands initially gets

narrower for increasing values of α. It eventually closes at α = 0.07m1, where a pair of Dirac-like linear crossing
cones in the first Brillouin zone emerges. Note that there are six K-points due to six fold symmetry in the wave
vector µ-space, but only one third of the cone at each K-point is included in the first Brillouin zone. Finally, for
α > 0.07m1 a new (topologically nontrivial) gap is opened by lifting the pair of Dirac-like cones, so that the system
is characterized by two topologically non-trivial gaps.

FIG. S3: Evolution of the band structure for the gyroscopic hexagonal lattice as a function of α: Note that the
grey and yellow shaded areas highlight topologically trivial and non-trivial gaps, respectively.

FIG. S4: Evolution of the modal polarizations of 2nd and 3rd bands at K-points as a function of α

Importantly, we also find that the topological transition is accompanied by a local band inversion near K-points.
In fact, the results shown in Fig. S4 for the modal polarizations of m1 and m2 at K-points reveal that a local mode
switching between the 2nd and 3rd bands occurs during the topological transition at α = 0.07m1. For α < 0.07m1

we find that the motion of m2 dominates for the second band, while the motion of m1 dominates for the third band.
A switch occur at α = 0.07m1, so that when α > 0.07m1 we find that the motion of m1 dominates for the second
band, while the motion of m2 dominates for the third band. We note that similar band inversion during topological
phase change has recently been experimentally observed in one-dimensional acoustic systems [1].
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TOPOLOGICAL PHASE DIAGRAM

To further clarify the process resulting in the formation of the topologically non-trivial gap between the 2nd and
the 3rd bands, we also investigate the effect of symmetry breaking for spatial inversion (P) and time reversion (T). As
shown in Fig. S5a, for a non-gyroscopic lattice with both P-T symmetries no gap is observed. Moreover, a Dirac-like
crossing pair is found at the K point between the 2nd and the 3rd bands. When the time-reversal symmetry is
broken by adding gyroscopes (Fig. S5b) the Dirac-like crossing pair is lifted and a topologically non-trivial gap forms
(highlighted by the yellow shaded area in Fig. S5b).
On the other hand, when only the P-symmetry is broken by removing three black springs in the non-gyroscopic

lattice (as shown in Fig. S5c), the Dirac-like crossing pair is also lifted, but the emerging gap (highlighted by the grey
shaded area in Fig. S5c) is topologically trivial. Next, when also the T symmetry is broken by adding gyroscopes
(Figs. S5d and e), we find that the band structure strongly depends on the relative strength of P-breaking and
T-breaking. When P-breaking is dominant, only topologically trivial gaps are found. By contrast, when T-breaking
is dominant, topologically non-trivial gaps form. Finally, we note that, when P-breaking and T-breaking are balanced
(as in Fig. S5d), a Dirac-like crossing pair forms at the K point closing the band gap.

a b

c d e

m
1

m
1

m
1

FIG. S5: Topological phase diagram of the hexagonal phononic crystal. (a) Phononic crystal with both P and T
symmetries. The Dirac-like cones connecting the 2nd and 3rd bands at the K-point are protected by the PT symmetry. No
gap is formed. (b) Topologically non-trivial gap emerges between the 2nd and 3rd bands due to broken T symmetry. (c)
Topologically trivial gap emerges between the 2nd and 3rd bands due to broken P symmetry. (d) When P symmetry breaking
and T symmetry breaking are balanced, the Dirac-like cones persist. (e) When the T symmetry breaking strength dominates
the T symmetry breaking strength, the Dirac-like cones are lifted to form a topologically non-trivial gap
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EFFECT OF EXCITATION FORCE DIRECTION

Although the results presented in Fig. 3 of the main are for an harmonic excitation with 45◦ inclination (i.e.
F(t) = [Fx(t), Fy(t)] = [1, 1]F0e

−iωt), it is important to note that the one-way edge modes are not affected by the
direction of the applied force. To clarify this point in Figs. S6, S7 and S8 we report results for the gyroscopic lattice
excited by an harmonic force at 45◦, 0◦ (horizontal excitation) and 90◦ (vertical excitation). The results clearly show
that the one-way edge modes are not affected by the direction of the applied force.

t = 2T
0

t = 12T
0

t = 22T
0

t = 32T
0

FIG. S6: Transient Response of a gyroscopic phononic crystal consisting of 20 × 20 unit cells with a line defect on the right
boundary. Starting from t = 0, a time-harmonic excitation force F(t) = [Fx(t), Fy(t)] = [1, 1]F0e

−iωt is prescribed at the site
indicated by the red arrow. Snapshots of the displacement field at (a) t = 2T0, (b) t = 12T0, (c) t = 22T0 and (d) t = 32T0,

where T0 =
√

m1/k1 is the characteristic time scale of the system.

t = 2T
0

t = 12T
0

t = 22T
0

t = 32T
0

FIG. S7: Transient Response of a gyroscopic phononic crystal consisting of 20 × 20 unit cells with a line defect on the right
boundary. Starting from t = 0, a time-harmonic excitation force F(t) = [Fx(t), Fy(t)] = [1, 0]F0e

−iωt is prescribed at the site
indicated by the red arrow. Snapshots of the displacement field at (a) t = 2T0, (b) t = 12T0, (c) t = 22T0 and (d) t = 32T0,

where T0 =
√

m1/k1 is the characteristic time scale of the system.
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t = 2T
0

t = 12T
0

t = 22T
0

t = 32T
0

FIG. S8: Transient Response of a gyroscopic phononic crystal consisting of 20 × 20 unit cells with a line defect on the right
boundary. Starting from t = 0, a time-harmonic excitation force F(t) = [Fx(t), Fy(t)] = [0, 1]F0e

−iωt is prescribed at the site
indicated by the red arrow. Snapshots of the displacement field at (a) t = 2T0, (b) t = 12T0, (c) t = 22T0 and (d) t = 32T0,

where T0 =
√

m1/k1 is the characteristic time scale of the system.
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ADDITIONAL RESULTS FOR SQUARE LATTICE

FIG. S9: Transient Response of a gyroscopic phononic crystal consisting of 40 × 30 square unit cells with a line defect
on the top boundary: Snapshots of the velocity field at (a) t = 5T0, (b) t = 15T0, (c) t = 25T0 and (d) t = 35T0,

where T0 =
√

m1/k1 is the characteristic time scale of the system. Starting from t = 0, a time-harmonic excitation force

F(t) = [Fx(t), Fy(t)] = [1, 1]F0e
−iωt is prescribed at the site indicated by the red arrow.
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FORMULATION OF GYROSCOPE

The gyroscope considered in this study has its top tip of the rotational axis pinned to a concentrated mass site in
the phononic crystal, and the bottom tip pinned to the ground (Fig. S10). As a result, all translational motions at
the base are prevented, while free rotations are allowed. Each gyroscope has 3 degrees of freedom described by the
spin (ψ), precession (ϕ) and nutation (θ) angles with respect to the vertical z-axis, as shown in Fig. S10. Assuming
constant spin and precession rates (ψ̇ = Ψ, ϕ̇ = Φ and ψ̈ = ϕ̈ = 0), its equations of motion can be written as [2–4]:

Mx = Ixx(θ̈ − Φ2 sin θ cos θ) + IzzΦsin θ(Φ cos θ +Ψ) (S9)

My = (2IyyΦθ̇ cos θ)− Izz θ̇(Φ cos θ +Ψ)) sin θ (S10)

Mz = IzzΦθ̇ sin θ (S11)

where Mx, My and Mz are moments about the x, y and z axes, respectively, and Ixx, Iyy and Izz are the second
moments of inertia. Note that in the absence of external moments Mx =My = 0 and that for symmetric gyroscopes
(as those considered in this study) Ixx = Iyy = I0.

FIG. S10: Gyroscope: Schematic of a gyroscope with the top tip pinned to a mass in the lattice.

Here we consider a small amplitude time-harmonic in-plane motion at the top tip of the gyroscope induced by the
lattice vibration,

Utip = h sin(θ) ≈ hθ = hΘeiωt for |Θ| ≪ 1, (S12)

where h is the height of the gyroscope. Under such assumption of small amplitude tip displacement ( sin θ ≈ θ and
cos θ ≈ 1), Eqn. (S10) can then be simplified to provide the relation between precession rate and spin rate,

ϕ̇ = Φ =

(
Izz

2I0 − Izz

)
Ψ (S13)

Moreover, substitution of Eqn. (S12) into Eqn. (S9) yields,

(Izz − I0)Φ
2 + IzzΨΦ− I0ω

2 = 0 (S14)

which can be combined with Eqn. (S13) to give

Ψ = ±ω 2I0 − Izz
Izz

(S15)

Note that, for ω = 0, then Ψ = 0 implies that the gyroscope is not spinning and there is no rotational inertial coupling
effect.
Finally, introducing Eqn. (S15) into Eqn. (S11), we arrive at

Mz = ±ωθ̇θIzz = ±iω2θ2Izz (S16)
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Next, we determine the gyroscopic force Fg between the gyroscope and the concentrated mass pinned at its top. Fg

is perpendicular to the direction of Utip in the xy-plane and has to satisfy the balance of moment about the z-axis:

Mz = Fgh sin θ ≈ Fghθ (S17)

Combining Eqns. (S16) and (S17), we finally conclude that Fg takes the form

Fg = ±iω
2

h2
IzzUtip (S18)

Therefore, when the mass connected at the top tip of the gyroscope is displaced by Utip = [ux, uy], the effective
gyroscopic inertial force is given as:

Fg = ±iω
2

h2
IzzRUtip, (S19)

where R is the rotation matrix,

R =

(
0 1
−1 0

)
(S20)

introduced to make the direction of Fg orthogonal to Utip.

Consequently, to take this rotational inertial effect into account, the mass matrix associated to each mass is given
by

M̃ =

(
m iα
−iα m

)
, (S21)

where α = ±Izz/h2 represents the inertia coupling with a phase shift dictated by the imaginary multiplier i. This
imaginary nature of the gyroscopic inertial effect indicates directional phase shifts between two independent directions
of the tip displacements, which breaks time-reversal symmetry [5].
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CALCULATION OF CHERN NUMBERS

We start by noting that the frequency-domain wave equation for a lattice is given by

K(µ)U = ω2M̃U, (S22)

where µ is the Bloch-wave vector.
Solving Eqn. (S22) on the unit cell for wave vectors µ within the first Brillouin zone, we obtain the dispersion

relation ω = ω(µ) (eigenvalue) and the associated modal displacement vector field U(µ) (eigenvector).
For a two-dimensional (2D) lattice, we use a Nµ1 ×Nµ2 grid that covers the first Brillouin zone in the 2D µ-space.

The modal displacement associated to the n-th band is then a vector field, Un(µ) = Un(µ1, µ2) defined on a 2D
discretized parametric domain.

In the following we focus on modal displacement associated to the n-th band (for the sake of simplicity, we drop
the subscript n) and define the modal inner product as follows:

⟨U(µ)|U(µ′)⟩ = U(µ) · M̃U(µ′) =
∑

p,q
U∗
p (µ)M̃pqUq(µ

′) (S23)

where Up and Uq are components of vector U, and (·)∗ denotes the operation of complex conjugation.

Following an approach that is conceptually similar to the method proposed in [6], we calculate the Berry flux, F̃12,
for a small patch of the size ∆µ1 ×∆µ2 on the µ-grid:

F̃12(µ) = ln

(
⟨U(µ)|U(µ′)⟩ ⟨U(µ′)|U(µ′′)⟩ ⟨U(µ′′)|U(µ′′′)⟩ ⟨U(µ′′′)|U(µ)⟩
⟨U(µ)|U(µ)⟩ ⟨U(µ′)|U(µ′)⟩ ⟨U(µ′′)|U(µ′′)⟩ ⟨U(µ′′′)|U(µ′′′)⟩

)
, (S24)

where µ = (µ1, µ2), µ
′ = (µ1 +∆µ1, µ2), µ

′′ = (µ1 +∆µ1, µ2 +∆µ2) and µ′′′ = (µ1, µ2 +∆µ2). Here F̃12 is defined
within the principal branch of the logarithm function, such that

−π < 1

i
F̃12(µ1, µ2) ≤ π ∀µ1, µ2 . (S25)

As shown in Ref. [6], we note that the denominator in Eqn. (S24) cannot vanish in order for it to be well defined.
This condition can always be satisfied by a infinitesimal shift of the Nµ1 ×Nµ2 grid in µ-space.

Finally, the numerical Chern number can be calculated by integrating the Berry flux over the entire first Brillouin
zone:

C =
1

2πi

∑
µ1

∑
µ2

F̃12(µ1, µ2). (S26)

In addition, we note that when two or more bands share degenerate point(s) in band structure (e.g. the first and
second bands always have a degeneracy at ω → 0), their combined Chern number should be calculated instead of
individual ones.
To get the combined Chern number for the n-th and m-th bands, for instance, all four inner products of the form

⟨U(µ)|U(µ′)⟩ in the numerator of Eq. (S24) need to be replaced by the determinant of a 2× 2 matrix P(µ,µ′):

P(µ,µ′) =

(
⟨Un(µ)|Un(µ

′)⟩ ⟨Un(µ)|Um(µ′)⟩
⟨Um(µ)|Un(µ

′)⟩ ⟨Um(µ)|Um(µ′)⟩

)
, (S27)

If three or more bands are crossing each other, the matrix P(µ,µ′) defined in Eq. (S27) can be easily generalized
to a 3× 3 or higher order matrix.
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