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a b s t r a c t

We reveal the unique and fundamental advantage of inerter-based elastic metamaterials by a com-
parative study among different configurations. When the embedded inerter is connected to the matrix
material on both ends, the metamaterial shows definite superiority in forming a band gap in the ultra-
low frequency - equivalently the ultra-long wavelength - regime, where the unit cell size can be four or
more orders of magnitude smaller than the operating wavelength. In addition, our parametric studies
in both one and two dimensions pave the way towards designing next-generation metamaterials for
structural vibration mitigation.

© 2022 Elsevier Ltd. All rights reserved.
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Mitigation of low-frequency vibrations has long been a major
hallenge. One promising research direction points to architected
aterials — widely referred to as acoustic or elastic metamate-

ials [1–6]. They can exhibit a phononic band gap, i.e., a range
f frequencies in which no vibration can propagate. While many
ecent studies attempted to demonstrate low-frequency band
aps [7–20,20–32], there is no consensus on which frequency
anges should be called ‘‘low’’ or ‘‘ultra-low’’. The exact meaning
f low frequency varies from a fraction of one Hz [12,21], to
everal Hz [7,8,20], and up to many kHz [11,23,28]. The word
‘low’’ is a relative concept that depends on application-specific
cenarios.
To facilitate a generally meaningful discussion and a fair com-

arison among different systems and configurations, here we
ocus on a universal and dimensionless frequency for all vibro-
lastic metamaterials: f = a/λ, where a denotes the size of
metamaterial unit, and λ is the operating wavelength. All

scattering-based band gaps in phononic crystals [33,34] are at the
order of f = a/λ ∼ 1. In contrast, locally resonant metamaterials
mbedded with mass-resonators [35,36] usually exhibit band
aps at a much lower frequency range of f = a/λ ∼ 10−2 to
0−3.
In this Letter, we demonstrate the unique capability of inerter-

ased metamaterials in forming band gaps at the ultra-low di-
ensionless frequencies, where f = a/λ ∼ 10−4. The key

∗ Corresponding author.
E-mail address: pai.wang@utah.edu (P. Wang).
 m

ttps://doi.org/10.1016/j.eml.2022.101847
352-4316/© 2022 Elsevier Ltd. All rights reserved.
component is the inerter, a two terminal mechanical device of-
fering a frequency-independent inertia much larger than its own
physical mass [37,38]. As illustrated in Fig. 1, this is possible
because the inerter couples linear relative motions between its
two ends to the rotation of a flywheel. The flywheel moment of
inertia can be amplified to produce a large inertial effect. The use
of rotational motion also makes it possible for the device to be
compact. Like springs and dampers, the inerter is a passive device
without the need of any active control. As shown in Fig. 1(a), the
inerter’s behavior is characterized by the response force, F =

(ü1 − ü2), where ü1 and ü2 are the accelerations at the two
erminals. The constant b is called the inertance, which has the
ame unit as mass. The performance attributes of inerters have
een experimentally verified with ball-screw designs [37,39–44],
ack-pinion designs [37,39,40,45], and hydraulic designs [46,47].
heir basic structures are shown in Figs. 1(b), 1(c) and 1(d),
espectively. In particular, the hydraulic inerter design benefits
rom the small physical mass of nearly incompressible fluid that
ills the inerter, so that it can produce an inertance that is 1.5 ×

06 times larger than its own the physical mass [47].
While there have been several pioneering attempts to in-

orporate inerters into metamaterial designs [48–54]. A critical
tudy to identify and overcome the fundamental hurdles is still
issing. With theoretical and numerical analyses of different
esigns, we investigate the basic challenges and offer a road map
o realize vibration-band-gap metamaterials with unit cells in the
ltra-deep sub-wavelength scale of a/λ ∼ 10−4.
To start, we model any matrix material or base structure of
etamaterials as a spring-mass chain with stiffness K and point
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Fig. 1. Conceptual schematics of inerters: (a) Abstract symbol and force
response. (b) Ball-screw inerter. (c) Rack-and-pinion inerter. (d) Hydraulic
inerter.

Fig. 2. Discrete models and band gaps: (a) Abstraction of any matrix material
as a spring-mass chain; (b) Inerter-based metamaterial; (c) Dispersion curves
and band gap (shaded region) of inerter-based metamaterial shown in (b) with
b/mb = b/M = 106 and kb/K = 1; and (d) Finite-chain response of inerter-based
etamaterial with 1000 unit cells. The transmissibility is calculated as the ratio
etween output and input amplitudes. Parametric studies on the band gap lower
dge frequency and relative size: (e) and (f) show the effects of change in the
nertance ratio, µb = b/M , with fixed κb = kb/K = 1. (g) and (h) show the
ffects of change in the stiffness ratio, κb = kb/K , with fixed µb = b/M = 106 .
2

mass M , as shown in Fig. 2(a). This model is valid since we
aim at the long-wavelength limit of λ ≫ a, where the discrete
nature of the main chain has negligible impact on the results.
With this setup, we can normalize all metamaterial dispersion
relations according to the main-chain wave speed in the long-
wavelength limit, c = a

√
K/M , so that all band gap frequencies

are non-dimensionalized [1,38] as f = ωa/(2πc) = a/λ, where ω
is the dimensional angular frequency in metamaterial dispersion
relations.

We analyze three types of metamaterial designs with: embed-
ded inerters [48,49,52,53], inerter-mass-resonators [48–52,54,
55], and traditional mass-resonators [35,36], as shown in Figs. 2
(b), 4(a) and 4(b), respectively. Applying the Bloch theorem [2,
38], we calculate the dispersion relations of each system and
investigate their behaviors at the low-frequency limit.

First, we consider metamaterials with the embedded inerter
and no other additional mass, as illustrated in Fig. 2(b). The model
has two degrees of freedom in the unit cell: uM — displacement
of mass M on the main chain and ub — displacement of the
oint between stiffness kb and inerter b on the side chain. With
he parameters kb/K = 1 and b/M = 106, the dispersion
elation plotted in Fig. 2(c) shows a band gap as the grey-shaded
ange near f = a/λ ∼ 10−4. The horizontal axis of normalized
ave number qa/π is shown in logarithmic scale because the
and-gap effects happen at very long wavelength. This ultra-
ow frequency band gap is further demonstrated by transmission
ttenuation in the steady-state dynamics simulation of a finite
hain [38], with results shown in Fig. 2(d). The band gap’s lower
dge frequency, fL, is the eigen-frequency of the first band at

= π/a, as labelled by a red square in Fig. 2(c). Similarly,
he band gap’s upper edge frequency, fU, is the eigen-frequency
of the second band at q = 0, as labelled by a red circle in
Fig. 2(c). As good non-dimensionalized measures for compari-
son purposes, we characterize the band gap by two quantities:
(1) The starting dimensionless frequency, fL; and (2) The relative
gap size ∆f = (fU − fL)/fL. Fig. 2(e) shows the numerical results
as fL = 1.125 × 10−4 with a relative gap size of ∆f ≈ 41.4%.

More generally, we can obtain the analytical equations,

fL =
1
2π

√
χb −

√
χ2
b − 4

κb

µb
and fU =

1
2π

√
κb

µb
, (1)

where χb = 2κb + κb/(2µb)+2, κb = kb/K , and µb = b/M . These
closed-form results enable us to perform asymptotic convergence
analyses [38]. At the limit of large inertance, µb ≫ κb, we have

fL →
1
2π

√
κb

µb(κb + 1)
and ∆f →

√
κb + 1 − 1. (2)

These equations reveal a unique advantage of the design with
embedded inerters: As the inertance b = µbM increases, the band
gap shifts to a lower frequency. At the same time, the relative
gap size, ∆f , approaches a finite and low limit, keeping the band
gap open at very low frequencies. This convergence is also shown
together with numerical results in Figs. 2(e) and 2(f) with κb =

kb/K = 1, where the gap size converges to ∆f =
√
2 − 1 ≈

1.4% for large µb. In the same limit, we can also get the modal
isplacement ratios at the gap edges as:
b/UM

→ 1 + 2/κb at f = fL,

Ub/UM
→ 1 at f = fU,

(3)

where Ub and UM are modal amplitudes of ub and uM , re-
spectively. Furthermore, taking the additional limit of κb ≫ 1
gives

fL →
1
2π

√
1
µb

, ∆f →
√

κb,

b M

(4)
U /U → 1 at both fL and fU.
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Fig. 3. The unit cell of Inerter-based metamaterial with an additional stiffness,
p , parallel to the embedded inerter.

his shows that it is beneficial to have stiff connections between
he inerter and the main chain: While we can get larger gap size
s kb = κbK increases, the gap’s starting frequency will saturate

and converges to a finite limit, retaining the ultra-low frequency
feature with large inertance. This high-stiffness convergence is
shown together with numerical results in Figs. 2(g) and 2(h) with
µb = b/M = 106. The lower gap edge converges to fL =

0−3/(2π ) ≈ 1.59 × 10−4.
An important variant design involves an additional stiffness,

p, parallel to the embedded inerter. As shown in Fig. 3, each
nit cell still has two degrees of freedom. We perform the same
nalyses as before and obtain the equations for both upper and
ower edges of the band gap in this case as

fL =
1
2π

√
χp −

√
χ2
p −

4(κb + κbκp + κp)
µb

, (5a)

U =
1
2π

√
(κb + κp)

µb
, (5b)

here χp = 2κb + (κb + κp)/(2µb) + 2, κb = kb/K , κp = kp/K ,
and µb = b/M . At the limit of large inertance (µb ≫ κb, κp) and
taking κb = 1, we get the asymptotic convergence

fL →
1
2π

√
2κp + 1
2µb

and ∆f →

√
1 +

1
2κp + 1

− 1, (6)

hich indicate that, as the parallel stiffness kp increases, not only
oes fL get higher, but ∆f also gets smaller. Hence, the parallel
tiffness kp has only detrimental effects, and it is best to set kp
o zero to achieve both design objectives of lower gap frequency
nd larger gap size.
Therefore, the optimal design requires that the inerter has very

arge inertance and very stiff connections with the base structure,
nd it is better not to incorporate any stiffness parallel to the
nerter. Because it is possible to fabricate inerters with inertance
ore than a million times of its actual mass (µb ∼ 106) [47],

he embedded inerter design shown in Fig. 2(b) is practical for
ngineering applications.
Next, we study an alternative metamaterial design with em-

edded mass-inerter resonators, as illustrated in Fig. 4(a). One
nd of the inerter is connected to the main chain, while the other
nd is connected to a resonator mass m. This results in a model
ith three degrees of freedom in each unit cell: uM — displace-
ent of mass M on the main chain, ub — displacement of the
oint between stiffness kb and inerter b, and um - displacement of
he resonator mass m. Applying the same Bloch-wave procedures
s before yields the dispersion bands for this system [38]. At the
imit of large inertance (µb ≫ µm, κb, κf ) and low frequency
f ≪ 1), we arrive at

L →
1

√
κbκm and ∆f → 0, (7)
2π µb(κb + κm)
3

Fig. 4. Discrete models: (a) Metamaterial with inerter-mass-resonators; (b)
Metamaterial with mass-resonators;.

where µb = b/M , µm = m/M , κb = kb/K , and κf = kf /K .
ince increasing the inertance closes the band gap (∆f → 0), this
ass-inerter-resonator design shown in Fig. 4(a) is not suitable to
chieve ultra-low frequency band gaps.
Lastly, we also look into the traditional locally resonant meta-

aterials with embedded mass-resonators, as illustrated in Fig. 4
b). The discrete model has two degrees of freedom in each unit
ell: uM — displacement of mass M on the main chain, and um —
isplacement of the resonator mass m. The analytical closed-form
xpressions of the band gap edges are [38,56]

fL =
1
2π

√
χm −

√
χ2
m − 4

κm

µm
, (8a)

U =
1
2π

√
κm

µm
+ κm, (8b)

here χm = κm/2 + κm/(2µm) + 2, κm = km/K , and µm = m/M .
ased on Eq. (8a), in order to achieve ultra-low-frequency band
aps with fL ∼ 10−4, we need µm/κm ∼ 108. On the other hand,
e need to avoid the case of µm = m/M ≫ 1 since it would make
he embedded mass-resonator too heavy as compared to the
atrix material or base structure, and hence would be infeasible

n most applications. The only viable choice is to adopt the ultra-
ow-stiffness design with µm ∼ 1 and κm ≪ 1, at which limit we
get:

fL →
1
2π

√
κm

µm
and ∆f →

√
µm + 1 − 1. (9)

This approach to form a band gap at ultra-low frequencies may
initially seem possible. In fact, with µm = m/M = 1 and κm =

km/K = 5×10−7, we obtain exactly the same dispersion bands as
those plotted in Fig. 2(c). However, in the same limit of µm ∼ 1
and κm ≪ 1, we get the modal displacement ratios at the gap
edges as

Ub/UM
→ 4/κm at f = fL,

Ub/UM
→ 1/µm at f = fU.

(10)

Hence, the same design parameters give rise to a very high modal
displacement ratio, Um/UM

→ 4/κm = 8 × 106 at the lower
gap edge fL (marked with red square in Fig. 2(c)). This means
the resonator mass would vibrate with an amplitude that is
millions of times of the vibration amplitude in the main chain.
Therefore, the ultra-low stiffness design here is impractical in
most application scenarios.

Based on the analyses of all three designs above, we conclude
that the inerter-based metamaterial design depicted in Fig. 2(b)
is the only suitable solution to achieve band gaps at the ultra-low
dimensionless frequency of f = a/λ ∼ 10−4 or lower.



F. Jamil, F. Chen, B. Deng et al. Extreme Mechanics Letters 56 (2022) 101847
To further demonstrate the efficacy and practicality of this de-
sign, we perform numerical studies on two-dimensional lattices
with embedded inerters. Due to the close relevance to engineer-
ing applications, there have been many pioneering studies realiz-
ing band gaps in two- and three-dimensional metamaterials with
other lever- or geometry-based inertial amplified structures [57–
60], as well as two-dimensional structures that incorporate a flat
plate [61–64] or a beam [50,53,65–69] as the base structure with
inerter-based resonators. However, none of the designs so far can
achieve band gaps at the ultra-low dimensionless frequency of
f = a/λ ∼ 10−4. In the following, we investigate the viable
design illustrated in Fig. 2(b) in two-dimensional systems.

Here, we show conceptual two-dimensional designs in the
form of inerter-in-lattice configurations that can represent var-
ious engineering structures. As shown in Fig. 5(a), for graphic
compactness, we use a blue straight line to represent a con-
nection with main-chain stiffness K , side-chain stiffness kb, and
side-chain inertance b. We assume the displacement ub at the
point between stiffness kb and inerter b is always rigidly con-
strained in the lateral direction of the connection unit, so that
ub is always along the direction of the connection. Then, we
construct square (Fig. 5(b)) and triangular (Fig. 5(c)) lattices with
this basic connection building block. All connections possess an
embedded inerter on the side chain. Specifically for the square
lattice, the diagonal connections are necessary to make the lattice
statically stable, so that no zero-frequency band can exist. The
crossing point of the two diagonal connections at the center
of each square is not a joint, and there is no interactions here
between the two diagonal connections. Although the formula-
tions and derivations [38] are more challenging than those for
one-dimensional cases, we can still study the two-dimensional
designs via numerical results. With stiffness ratio κb = kb/K = 1
and inertance ratio µb = b/M = 106, we plot the dispersion
curves of square and triangular lattices with embedded inerters
in Figs. 5(d) and 5(e), respectively. A band gap exists in both
cases with the lower gap edge frequency of fL = 1.125 × 10−4

and the relative gap size of ∆f ≈ 41.4%. Not only do the band
gaps match each other in the two different lattices, but they
also match the band gap of the one-dimensional configuration
shown in Fig. 2(b). It might be counter-intuitive to have such
close resemblance of dispersion relations for different lattices.
The fundamental reason is that the effect happens in the very long
wavelength limit of λ ≫ a. In this regime, the wave only ‘‘sees’’
and ’’feels’’ the homogenized properties of the lattice geometry,
and the unit-cell level structures and small length-scale details
have minimal influence on the metamaterial behavior. As a result,
the difference in lattice configurations has negligible impact on
the ultra-low-frequency band gap.

To conclude, our analytical and numerical analyses offer clear
guidelines to design elastic metamaterials with an ultra-low-
frequency band gap: Each unit cell needs an embedded inerter
with both terminals connected to the base material; no additional
resonator mass should be used; to achieve band gaps at lower
frequency, higher inertance is needed; and, to achieve wider band
gaps, stiffer connection between the inerter and the base mate-
rial is needed. These insights provide actionable guidelines for
future studies towards low-frequency vibration mitigation using
metamaterials. Furthermore, for future studies on experimental
fabrications of inerter-based metamaterials, we anticipate two
potential challenges: (1) Achieving high inertance-to-mass ratio,
µ = b/mb in a compact design; and (2) Optimizing motion
transmission mechanisms between matrix material and inerters.
Lastly, although this study is focused on periodic metamateri-
als, our analyses can be extended to quasi-crystalline [70–72],
hyper-uniform [73–75], amorphous [76] or other non-periodic

inerter-based metamaterial designs.

4

Fig. 5. Two-dimensional lattices with embedded inerters: (a) Basic connection
unit used in both lattices. Note that ub here is always just a single degree of
freedom in any two-dimensional lattice, as we constrain it to allow displacement
parallel to the connection only. (b) and (c) depict the square and triangular
lattices with embedded inerters, respectively. With κb = kb/K = 1 and µb =

b/M = 106 , (d) and (e) show the dispersion bands of configurations (b) and (c),
respectively. The blue insets of (d) and (e) illustrate Brillouin zones for square
and triangular lattices, respectively. Γ = (0, 0), X = (1, 0)π/a, M = (0, 1)π/a,
K = (4/3, 0)π/a, and M’ = (1, 1/

√
3)π/a are high-symmetry points at the

boundaries of irreducible Brillouin zones.
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S1 Inerter Designs

Conventional passive vibration mitigation systems include masses, springs and dampers.
Both springs and dampers are two-terminal mechanical elements. Their force responses are
related to the relative displacement and velocity of the two ends, respectively (Fig. S1(a)
and (b)). In contrast, a mass is a single-terminal mechanical element, in which the relative
motion of its two opposite sides does not contribute to the inertial effect. To mitigate low-
frequency vibration, larger mass is usually necessary to provide enough inertia. However,
increasing mass is not desirable as it makes the system heavy and bulky, and even not
feasible for some cases where lightweight compact systems are essential. An inerter provides
a much bigger inertial effect than its actual physical mass. Thus, it could be a promising
candidate for mitigating low-frequency vibrations. As shown in Fig. S1(c), inerter[12, 14]
is a two-terminal element that offers inertial effects. Its force response is proportional to
the relative acceleration between the two terminals. The proportionality coefficient, b, of an
inerter is called inertance and has the unit of mass.
The commonly manufactured inerters are: ballscrew [10, 3, 11, 13, 16, 21, 22], rack-and-
pinion [10, 3, 11, 19] and hydraulic [17, 8] inerters. Fig. S1(d) and (e) show ball-screw and
rack-pinion inerters, respectively. Here, the inertance depends predominantly on the size of
the flywheel. Therefore, inertance produced by the inerters is limited by the physical size of

Figure S1: Two-terminal mechanical elements: (a) spring, (b) damper and (c) inerter. Mech-
anism illustration of a ball-screw inerter (d); rack-and-pinion inerter (e); and hydraulic in-
erter (f). u: displacement, u̇: velocity, ü: acceleration, F : force, k: stiffness, c: damping,
and b: inertance.
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the inerter. Fig. S1(f) shows hydraulic inerter that can produce very high inertance due to
the inertial resistive force from the small amount of fluid filling up the inside of the inerter.
A small Vm/Ap ratio can produce inertance of up to 1.5× 106 times larger than the physical
mass of the inerter, where Vm is the volume of the displaced fluid that rotates the shaft
connected to flywheel by 360◦, and Ap is the piston area [8].
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S2 Main-ChainWave Speed & Dimensionless Frequency

Considering the one dimensional mono-atomic chain depicted in Fig. 2(a) of the main text,
we start with the equations of motion

MüM
n +K(uM

n − uM
n−1) +K(uM

n − uM
n+1) = 0 (S1)

Here, M is mass on the main chain; K is stiffness on the main chain; and uM
n is displacement

of the nth cell on main chain.

According to the Bloch theorem [5],

uM
n = UMei(qna+ωt) (S2)

where UM is the wave amplitude. Here q, a, ω and t denote the (angular) wave number,
lattice constant, (angular) frequency and time, respectively.
From Eqns. (S1) and (S2), we arrive at the classical mono-atomic chain dispersion relation:

ω = 2

√
K

M

∣∣∣ sin(qa
2
)
∣∣∣ (S3)

Taking the positive-q branch, we can obtain the main-chain wave speed at the long wave-
length limit as c = phase velocity (q −→ 0) = group velocity (q −→ 0).

Phase velocity : vp(q −→ 0) = lim
q→0

ω

q
= a

√
K

M
lim
qa
2
→0

sin( qa
2
)

qa
2

(S4)

Group velocity : vg(q −→ 0) = lim
q→0

dω

dq
= a

√
K

M
lim
qa
2
→0

cos(
qa

2
) (S5)

Since limx→0
sinx
x

= 1 and cos(0) = 1, we arrive at:

c = vp(q −→ 0) = vg(q −→ 0) = a

√
K

M
(S6)

At the long-wavelength dispersionless limit of λ ≫ a, we also know c = ωλ/2π. Hence, we
arrive at the dimensionless frequency as:

f =
ωa

2πc
=

ω

2π
√
K/M

=
a

λ
(S7)
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S3 Metamaterials with Embedded Inerters

Considering the one dimensional chain depicted in Fig. 2(b) of the main text, we start with
the equations of motion

MüM
n +K(uM

n − uM
n+1) +K(uM

n − uM
n−1) + b(üM

n − üb
n−1) + kb(u

M
n − ub

n) = 0 (S8)

kb(u
b
n − uM

n ) + b(üb
n − üM

n+1) = 0 (S9)

Here, b is inertance; K and kb are stiffness on the main chain and on the branch chain, re-
spectively; and uM

n and ub
n represent displacements of mass M of the nth cell and the degree

of freedom on the branch chain connected to the nth cell, respectively.

According to the Bloch theorem [5],

uM
n = UMei(nqa+ωt) (S10)

ub
n = U bei(nqa+ωt) (S11)

where UM and U b are amplitudes of the harmonic waves [15] uM
n and ub

n, respectively; q, a,
ω and t are wave number, lattice constant, angular frequency and time, respectively.

Substituting Eqns. (S10) and (S11) into Eqns. (S8) and (S9), we get

−ω2

[
M + b −be−iqa

−beiqa b

]
+

[
2K −K(eiqa + e−iqa) + kb −kb

−kb kb

]
=

[
0
0

]
(S12)

Fig. S2 shows the dispersion relation can be obtained solving eigenvalue problem using the
Eqn. (S12) and when solved analytically can result in dispersion equation for angular fre-
quency which can be used to find the expression for the edges of the band gap [1].

S3.1 Lower Edge of Band Gap

Based on the results plotted in Fig. 2(c) of the main text, we can find the lower edge of the
band gap at q = π, where Eqn. (S12) becomes:

−ω2

[
M + b b

b b

]
+

[
4K + kb −kb
−kb kb

]
=

[
0
0

]
(S13)

Taking the smaller eigen-frequency, we arrive at the lower edge frequency ωL:

ωL =

√
(4kbb+ kbM + 4Kb)−

√
(4kbb+ kbM + 4Kb)2 − 4(Mb)(4Kkb)

2Mb
(S14)

Eqn. (S14) can be normalized by 2π
√

K/M :

fL =
1

2π

√
(4kbb+ kbM + 4Kb)−

√
(4kbb+ kbM + 4Kb)2 − 4(Mb)(4Kkb)

2Kb
(S15)
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Taking stiffness ratio: κb = kb/K and inertance: µb = b/M , we get:

fL =
1

2π

√
χb −

√
χ2
b − 4

κb

µb

,

where,

χb = 2κb +
κb

2µb

+ 2.

(S16)

S3.2 Upper Edge of Band Gap

Similarly, we can find the upper edge of the band gap at q = 0, where Eqn. (S12) becomes:

−ω2

[
M + b −b
−b b

]
+

[
kb −kb
−kb kb

]
= 0 (S17)

Taking the larger eigen-frequency, we arrive at the upper edge frequency ωU:

ωU =

√
kb
b

(S18)

Eqn. (S18) can be normalized by 2π
√
K/M :

fU =
1

2π

√
Mkb
Kb

(S19)

Taking κb = kb/K and µb = b/M , we get:

fU =
1

2π

√
κb

µb

(S20)

S3.3 Convergence Limit for µb ≫ κb

Fig. 2(f) of the main text shows that, as inertance becomes large, the size of band gap
asymptotically reaches a plateau. For µb ≫ κb, Eqns. (S20) and (S16) becomes:

fU =

√
ζ

2π
, (S21)

where ζ = κb/µb.

ω2
L =

(
2πfL

)2
= χ′′

b −
√
χ′′
b
2 − 4ζ = χ′′

b

(
1−

√
1− ζ ′

)
(S22)

where χ′′
b = 2κb + 2, ζ = κb/µb and ζ ′ = 4ζ/χ′′

b
2.

The Taylor series expansion of
√
1− x is:

√
1− x =

∞∑
n=0

xn(−1)n
(

1
2

n

)
= 1− x

2
− x2

8
− x3

16
. . . (S23)
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The first two terms of the Taylor series from Eqn. (S23) are significant. Hence, from
Eqns. (S22) and (S23) we arrive at:

ω2
L =

(
2πfL

)2 → χ′′
b

(
1−

(
1− ζ ′

2

))
= χ′′

b

ζ ′

2
=

2ζ

χ′′
b

(S24)

fL → 1

2π

√
2ζ

χ′′
b

=
1

2π

√
κb

µb(κb + 1)
(S25)

For κb = 1, the relative size of band gap converges to:

∆f =
fU − fL

fL
→

√
ζ −

√
2ζ/χ′′

b√
2ζ/χ′′

b

=
√
κb + 1− 1 = 41.4% (S26)

S3.4 Additional convergence Limit for κb ≫ 1

Fig. 2(g) of the main text shows that, as stiffness ratio becomes large, the lower edge of
the band gap shifts to higher frequency and then converges to a finite limit. For κb ≫ 1,
Eqn. (S16) becomes: (

2πfL
)2

= χ′
b −
√
χ′
b
2 −Υ = χ′

b

(
1−

√
1−Υ′

)
where,

χ′
b = 2κb

Υ = 4κb/µb

Υ′ = Υ/χ′
b
2 = (κb µb)

−1

(S27)

The first two terms of the Taylor series from Eqn. (S23) are significant. Hence, from
Eqns. (S27) and (S23) we arrive at:(

2πfL
)2 → χ′

b

(
1−

(
1− Υ′

2

))
= χ′

b

Υ′

2
=

1

µb

(S28)

For µb = 106, the lower edge of the band gap converges to:

fL → 1

2π

√
1

µb

= 1.59× 10−4 (S29)

From Eqns. (S20) and (S29) the relative gap size converges to:

∆f =
fU − fL

fL
→
√
κb/µb −

√
1/µb√

1/µb

=
√
κb − 1 →

√
κb (S30)

S3.5 Eigenvector Formulation

Components of eigenvector UM and U b can be defined using Eqn.(S12):[
−ω2(M + b) + 2K −K(eiqa + e−iqa) + kb ω2be−iqa − kb

ω2beiqa − kb −ω2b+ kb

]{
UM

U b

}
=

[
0
0

]
(S31)
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S3.6 Modal Displacement Ratio at Lower Gap Edge

Solving Eqn.(S31) for eigenvector,

U b =
−ω2(M + b) + 2K −K(eiqa + e−iqa) + kb

−ω2be−iqa + kb
UM (S32)

From Eqns.(S14) and (S32), modal displacement ratio at the lower edge of the band gap,
i.e., q = π,

U b

UM
=

−ω2
L(M + b) + 4K + kb

ω2
Lb+ kb

where,

ω2
L = χb −

√
χ2
b −

4Kkb
Mb

χb =
2kb
M

+
kb
2b

+
2K

M

(S33)

Eqn. (S33) is the expression for modal displacement ratio at the lower edge frequency of the
band gap.

S3.7 Modal Displacement Ratio at Upper Gap Edge

Solving Eqn.(S31) for eigenvector,

U b =
−ω2beiqa + kb
−ω2b+ kb

UM (S34)

From Eqns.(S18) and (S34), modal displacement ratio at the upper edge of the band gap,
i.e., q = 0,

U b

UM
= 1 (S35)

Eqn. (S35) is the expression for modal displacement ratio at the upper edge frequency of the
band gap.

S3.8 Continuum Model

A continuum mechanics-based model on the basis of the discrete lattice model can be ob-
tained by replacing discrete parts with their equivalent continuum counterparts [4].
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The approximations of the discrete elements in Eqns. (S8) and (S9) are:

uM
n = uM(x)

uM
n+1 = uM(x+ a) = uM(x) +

a

1!

∂uM

∂x
+

a2

2!

∂2uM

∂x2
+ . . .

uM
n−1 = uM(x− a) = uM(x)− a

1!

∂uM

∂x
+

a2

2!

∂2uM

∂x2
+ . . .

ub
n = ub(x)

ub
n+1 = ub(x+ a) = ub(x) +

a

1!

∂ub

∂x
+

a2

2!

∂2ub

∂x2
+ . . .

ub
n−1 = ub(x− a) = ub(x)− a

1!

∂ub

∂x
+

a2

2!

∂2ub

∂x2
+ . . .

(S36)

From Eqns. (S8), (S9) and (S36), we arrive at:

(−ω2M − a2q2K + kb)u
M(x)− (ω2

(
aq − a2q2

2

)
b+ kb)u

b(x) = 0

(ω2

(
1 + aq +

a2q2

2

)
b− kb)u

M(x)− (ω2b− kb)u
b(x) = 0

(S37)

Dispersion relation for continuum model is obtained solving Eqn. (S37):

ω =

√√√√√√2(Mkb −Kba2q2 − kbba2q2)± 2

√
M2k2

b + 2(K − kb)bkba
2q2

+ (K + kb)
2b2a4q4 −Kkba

6q6

4Mb− a4q4
(S38)

Normalizing Eqn.(S38) by 2π
√

K/M ,

f =
1

2π

√
M

K

√√√√√√2(Mkb −Kba2q2 − kbba2q2)± 2

√
M2k2

b + 2(K − kb)bkba
2q2

+ (K + kb)
2b2a4q4 −Kkba

6q6

4Mb− a4q4
(S39)

Continuum model, obtained using Eqn. (S38), is in close agreement with the discrete model,
obtained solving the eigenvalue problem for Eqn. (S12) (shown in Fig. S2) for the bandgap
region. Higher-order continuum model can lead to better agreement between the two models
for complete dispersion curve.
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Figure S2: Comparison between two-order continuum model and discrete model.

11



S4 Metamaterials with Inerter-Mass-Resonators

Considering the one dimensional chain depicted in Fig. 4(a) of the main text, we start with
the equations of motion

MüM
n +K(uM

n − uM
n+1) +K(uM

n − uM
n−1) + kf (u

M
n − um

n ) + kb(u
M
n − ub

n) = 0 (S40)

müm
n + kf (u

m
n − uM

n ) + b(üm
n − üb

n+1) = 0 (S41)

kb(u
b
n − uM

n ) + b(üb
n − üm

n+1) = 0 (S42)

Here, b is inertance; K is stiffness on the main chain and kf and kb are stiffness on the branch
chain; and uM

n and um
n represent displacements of main chain mass, M , and resonator chain

mass, m of the nth cell and ub
n is the degree of freedom on the branch chain connected to the

nth cell.

According to the Bloch theorem [5],

uM
n = UMei(nqa+ωt) (S43)

um
n = Umei(nqa+ωt) (S44)

ub
n = U bei(nqa+ωt) (S45)

where UM , Um and U b are amplitudes of the harmonic waves [15] uM
n , um

n and ub
n, respectively;

q, a, ω and t are wave number, lattice constant, angular frequency and time, respectively.

Substituting Eqns. (S43), (S44) and (S45) into Eqns. (S40), (S41) and (S42), we get

−ω2

M 0 0
0 m+ b −b
0 −b b

+

2K −K(eiqa + e−iqa) + kf + kb −kf −kb
−kf kf 0
−kb 0 kb

 =

00
0

 (S46)

Fig. S3 shows the dispersion relation can be obtained solving eigenvalue problem using the
Eqn. (S46) and when solved analytically can result in dispersion equation for angular fre-
quency which can be used to find the expression for the edges of the band gap [1]. As
Eqn. (S46) suggests there are three degrees of freedom, so there will be three frequency
bands which produces two band gaps, one in higher frequency regime and one in low fre-
quency regime. The rest of the study for this section focuses on the lower band gap.

S4.1 Lower Edge of Band Gap

Based on the results plotted in Fig. S3, we can find the lower edge of the band gap at q = π/a,
where Eqn. (S46) becomes:

−ω2

M 0 0
0 m+ b −b
0 −b b

+

4K + kf + kb −kf −kb
−kf kf 0
−kb 0 kb

 =

00
0

 (S47)
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The cubic polynomial in Eqn. S48 can be solved analytically and the smallest eigen-frequency
can be used to arrive at the lower gap edge frequency ωL:

Aλ3 +Bλ2 + Cλ+D = 0 (S48)

where,

A = −Mmb

B = kfMb+ kbM(m+ b) + bm(kf + kb) + 4Kbm

C = kfkb(M +m)− 4K(kfb+ kbm+ kbb)

D = 4Kkfkb

λ = ω2

ωL =
√

λmin

(S49)

Figure S3: (a) Dispersion curve for material with inerter-mass-resonator shows no band gap
for m/M = 1, b/mb = b/M = 106 and kb/K = kf/K = 1. Here, the frequency is normalized

with respect to 2πc/a = 2π
√
K/M , so that f = a/λ. The red square shows the frequency

at the lower edge of the band gap. The red circle shows the frequency of the upper edge
of the band gap. λ: wavelength, a: unit cell length, K: spring stiffness on main chain, M :
mass on main chain, kf and kb: spring stiffness on resonator chain.
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S4.2 Upper Edge of Band Gap

Similarly, we can find the upper edge of the band gap at q = 0, where Eqn. (S46) becomes:

−ω2

M 0 0
0 m+ b −b
0 −b b

+

kf + kb −kf −kb
−kf kf 0
−kb 0 kb

 =

00
0

 (S50)

Taking the second eigen-frequency (the first one is zero), we arrive at the upper gap edge
frequency ωU:

ωU =

√√√√√√−
(
kfMb+ kbM(m+ b)

+ bm(kf + kb)

)
+

√
(kfMb+ kbM(m+ b) + bm(kf + kb))

2

+ 4(Mmb)kfkb(M +m)

−2Mmb
(S51)

Eqn. (S51) can be normalized by 2π
√
K/M :

fU =
1

2π

√√√√√√√√−

(kfMb

+ kbM(m+ b)

+ bm(kf + kb)

)
+

√
(kfMb+ kbM(m+ b) + bm(kf + kb))

2

+ 4(Mmb)kfkb(M +m)

−2Kmb
(S52)

Taking κf = kf/K, κb = kb/K, µb = b/M and µm = m/M , we get:

fU =
1

2π

√√√√χf −

√
χ2
f −

κfκb

µb

(
1

µm

+ 1

)
,

where

χf =
κf

2

(
1

µm

+ 1

)
+

κb

2

(
1

µb

+
1

µm

+ 1

)
.

(S53)

S4.3 Convergence Limit for b ≫ M,m,K, kf , kb

Fig. S4 shows that, as inertance becomes large, the size of the band gap asymptotically
approaches zero. Here, we consider the limit of large inertance b ≫ M,m,K, kf , kb, and low
frequency ωL ≪ 1, i.e. λ ≪ 1, Eqn. (S49) becomes:

A = −Mmb

B = (kf + kb)(M +m)b+ 4Kmb

C = −4K(kf + kb)b

(S54)

Eqn. (S48) becomes:

− 4K(kf + kb)bλ+ 4Kkfkb = 0

√
λ = ωL =

√
kfkb

(kf + kb)b

(S55)
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For µb ≫ µm, µb ≫ κb and µb ≫ κf we have

(
2πfU

)2
= χ′

f −
√
χ′
f
2 − 2ζ = χ′

f

(
1−

√
1− ζ ′

)
.

where

χ′
f = κf + κb,

ζ = κfκb/µb,

ζ ′ = 2ζ/χ′
f
2.

(S56)

We also have

ωL =
ω∗

2π

√
ζ

χ′
f

,

where

χ′
f = κf + κb,

ζ = κfκb/µb,

ζ ′ = 2ζ/χ′
f
2.

(S57)

The first two terms of the Taylor series from Eqn. (S23) are significant. Hence, from
Eqns. (S56) and (S23) we arrive at:

(
2πfU

)2
= χ′

f

(
1−

(
1− ζ ′

2

))
= χ′

f

ζ ′

2
=

ζ

χ′
f

(S58)

ωU =
ω∗

2π

√
ζ

χ′
f

(S59)

Eqns. (S57) and (S59) can be used to find the convergence of the band gap size:

∆f =
fU − fL

fL
=

√
ζ/χ′

f −
√

ζ/χ′
f√

ζ/χ′
f

= 0% (S60)

S4.4 Possibility of Ultra-low Frequency Band Gap

As shown by the limit analysis above, having a large inertance will unavoidably close the
band gap in this case. This fact is further corroborated by the numerical results shown
in Fig. S4(b). Consequently, we conclude that metamaterials with inerter-mass-resonators
cannot achieve band gap at ultra-low frequency.
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Figure S4: (a) and (b) show lower edge and relative size for kf/K = 1, m/M = 1 and
km/K = 1.
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S5 Metamaterials with Mass-Resonators

Considering the one dimensional chain depicted in Fig. 4(b) of the main text, we start with
the equations of motion

MüM
n +K(uM

n − uM
n+1) +K(uM

n − uM
n−1) + km(u

M
n − um

n ) = 0 (S61)

müm
n + km(u

m
n − uM

n ) = 0 (S62)

Here, M and m are masses on the main chain and branch chain, respectively; K and km are
stiffness on the main chain and branch chain, respectively; and uM

n and um
n are displacements

of the nth cell on main chain and branch chain, respectively.

According to the Bloch theorem [5, 15],

uM
n = UMei(nqa+ωt) (S63)

um
n = Umei(nqa+ωt) (S64)

where UM and Um are vibration amplitudes of M and m, respectively; q, a, ω and t are
(angular) wave number, lattice constant, (angular) frequency and time, respectively.

Substituting Eqns. S63 and S64 into Eqns. S61 and S62, we get

−ω2

[
M 0
0 m

]
+

[
2K −K(eiqa + e−iqa) + km −km

−km km

]
=

[
0
0

]
(S65)

Dispersion relation can be obtained analytically solving the Eqn. (S65) which can be used to
find the expression for the edges of the band gap [1].

S5.1 Lower Edge of Band Gap

We can find the lower edge of the band gap at q = π/a, where Eqn. (S65) becomes:

−ω2

[
M 0
0 m

]
+

[
4K + km −km
−km km

]
=

[
0
0

]
(S66)

Taking the smaller eigen-frequency, we arrive at the lower edge frequency ωL:

ωL =

√
(4Km+ kmm+ kmM)−

√
(4Km+ kmm+ kmM)2 − 4(Mm)(4Kkm)

2Mm
(S67)

Eqn. (S67) can be normalized by 2π
√

K/M :

fL =
1

2π

√
(4Km+ kmm+ kmM)−

√
(4Km+ kmm+ kmM)2 − 4(Mm)(4Kkm)

2Km
(S68)
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Taking κm = km/K and µm = m/M , we get:

fL =
1

2π

√
χm −

√
χ2
m − 4

κm

µm

where,

χm = 2 +
κm

2
+

κm

2µm

(S69)

S5.2 Upper Edge of Band Gap

Similarly, we can find the upper edge of the band gap at q=0, where Eqn. (S65) becomes:

−ω2

[
M 0
0 m

]
+

[
km −km
−km km

]
= 0 (S70)

Taking the larger eigen-frequency, we arrive at the upper edge frequency ωU:

ωU =

√
km(M +m)

Mm
(S71)

Eqn. (S71) can be normalized by 2π
√
K/M :

fU =
1

2π

√
km(M +m)

Km
(S72)

Taking κm = km/K and µm = m/M , we get:

fU =
1

2π

√
κm

µm

+ κm (S73)

S5.3 Convergence Limit for µm ≫ κm

As resonator mass becomes large, the size of band gap goes to infinity. For µm ≫ κm,
Eqns. (S69) and (S73) becomes:

fU =
1

2π

√
ζ + κm where ζ = κm/µm, (S74)

ω2
L =

(
2πfL

)2
= χ′

m −
√
(χ′

m)
2 − 4ζ = χ′

m

(
1−

√
1− ζ ′

)
, (S75)

where χ′
m = 2 + κm/2, ζ = κm/µm, and ζ ′ = 4ζ/(χ′

m)
2.

The first two terms of Taylor series from Eqn. (S23) are significant. Hence, from Eqns.(S75)
and (S23) we arrive at:

ω2
L =

(
2πfL

)2 → χ′
m

(
1−

(
1− ζ ′

2

))
= χ′

m

ζ ′

2
=

2ζ

χ′
m

(S76)
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fL → 1

2π

√
2ζ

χ′
m

=
1

2π

√
4κm

µm(4 + κm)
(S77)

The relative band gap size converges to:

∆f =
fU − fL

fL
→

√
ζ + κm −

√
2ζ/χ′

m√
2ζ/χ′

m

=

√
χ′
m

2
(µm + 1)− 1 →

√
µm +

κmµm

4
+ 1− 1

(S78)

S5.4 Eigenvector Formulation

Components of eigenvector UM and Um can be defined using Eqn. (S70):[
−ω2M + 2K −K(eiqa + e−iqa) + km −km

−km −ω2m+ km

]{
UM

Um

}
=

[
0
0

]
(S79)

S5.5 Modal Displacement Ratio at Lower Gap Edge

Solving Eqn. (S79) for ω = ωL, we get:

Um =
−ω2M + 4K + km

km
UM (S80)

From Eqns. (S67) and (S80),

Um

UM
= −

(4Km+ kmm+ kmM)−

√
(4Km+ kmm+ kmM)2

− 4(Mm)(4Kkm)

2mkm
+

4K

km
+ 1

(S81)

Taking κm = km/K and µm = m/M , we get

Um

UM
= χm +

√
χ2
m − 4

µmκm

,

where

χm =
2

κm

+
1

2
− 1

2µm

(S82)

S5.6 Convergence Limit of Modal Displancement Ratio

For κm ≪ µm, Eqn. (S82) becomes:

Um

UM
= χ′

m +
√

χ′
m

2 − 4Υ = χ′
m

(
1 +

√
1−Υ′

)
,

where

χ′
m = 2/κm

Υ = (µm κm)
−1

Υ′ = 4Υ/χ′
m

2

(S83)
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The first two terms of the Taylor series from Eqn. (S23) are significant. Hence, from
Eqns.(S83) and (S23) we arrive at:

Um

UM
= χ′

m

(
1 +

(
1− Υ′

2

))
= 2χ′

m +
2Υ

χ′
m

=
4

κm

− 1

µm

= 8× 106 (S84)

S5.7 Modal Displacement Ratio at Upper Gap Edge

Solving Eqn. (S79) for ω = ωU, we get:

Um =
km

−ω2m+ km
UM (S85)

From Eqns. (S71) and (S85),
Um

UM
= −M

m
(S86)

Taking µm = m/M , we get:
Um

UM
= − 1

µm

(S87)

Eqn. S87 is the expression for modal displacement ratio on the upper edge of the band gap

20



S6 Steady-State Frequency-Domain Formulation For

Finite-Size One-Dimensional Metamaterials with Em-

bedded Inerters

Here, we consider a finite chain of N unit cells (Fig. S5), and only the first mass at uM
1 is

being harmonically excited. The equations of motion are:

MüM
1 +K(uM

1 − uM
2 ) + kb(u

M
1 − ub

1) = F0e
iωt

MüM
2 +K(uM

2 − uM
1 ) +K(uM

2 − uM
3 )

+kb(u
M
2 − ub

2) + b(üM
2 − üb

1)
= 0

...

...

MüM
N−1 +K(uM

N−1 − uM
N−2) +K(uM

N−1 − uM
N )

+kb(u
M
N−1 − ub

N−1) + b(üM
N−1 − üb

N−2)
= 0

MüM
N +K(uM

N − uM
N−1) + b(üM

N − üb
N−1) = 0

(S88)

kb(u
b
1 − uM

1 ) + b(üb
1 − üM

2 ) = 0

kb(u
b
2 − uM

2 ) + b(üb
2 − üM

3 ) = 0

...

...

kb(u
b
N−2 − uM

N−2) + b(üb
N−2 − üM

N−3) = 0

kb(u
b
N−1 − uM

N−1) + b(üb
N−1 − üM

N ) = 0

(S89)

Taking the solution for Eqns. (S88) and (S89) as:

uM
N = UM

N eiωt

ub
N = U b

Ne
iωt

(S90)

From Eqns. (S88) and (S90) we get,

α1 γ 0 . . . 0 0 κ 0 . . . 0 0
γ α γ . . . 0 0 δ κ . . . 0 0
0 γ α . . . 0 0 0 δ . . . 0 0
...

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 . . . α γ 0 0 . . . δ κ
0 0 0 . . . γ αN 0 0 . . . 0 δ

−kb βa 0 . . . 0 0 βb 0 . . . 0 0
0 −kb βa . . . 0 0 0 βb . . . 0 0
...

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 . . . βa 0 0 0 . . . βb 0
0 0 0 . . . −kb βa 0 0 . . . 0 βb





UM
1

UM
2

UM
3
...

UM
N−1

UM
N

U b
1

U b
2
...

U b
N−2

U b
N−1



=



F0

M

0
0
...
0
0
0
0
...
0
0



(S91)
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where,

α1 = −ω2 +
K

M
+

kb
M

α = −ω2(1 +
b

M
) +

2K

M
+

kb
M

αN = −ω2(1 +
b

M
) +

K

M

γ = −K

M

κ = − kb
M

δ = ω2 b

M
βa = ω2b

βb = −ω2b+ kb

(S92)

Transmissibility is calculated by:

Transmissibility = 20 log

(
UM
N

UM
1

)
(S93)

where UM
1 and UM

N are displacements of mass of the 1th and N th unit cells, respectively.
Fig. 1(d) of main text shows frequency domain simulation for inerter-based metamaterial
with 10,000 unit cells.

Figure S5: Finite N number of unit cells of inerter-based metamaterial.

Effect of finite number of unit cells has been shown in Fig. S6. As the number of unit
cells decreases the drop in transmissibility is less. Fig. S7(a) shows the finite size effect for
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Figure S6: Effect of finite unit cells.

Figure S7: (a) and (b) Effect of finite unit cells in resonator-based and inerter-based meta-
material, respectively.

resonator-based metamaterial for 6 unit cells. Several previous studies [6, 2, 18, 20] show a
band gap due to resonator can be realized in practice with despite of the finite size effects.
So, for inerter-based metamaterial it is also possible to realize a band gap regardless of the
finite size effects (Fig. S7(b)).
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S7 Effect of Stiffness kp Parallel to Inerters in Meta-

materials with Embedded Inerters

Considering the one dimensional chain depicted in Fig. S8, we start with the equations of
motion

MüM
n +K(uM

n −uM
n+1)+K(uM

n −uM
n−1)+kp(u

M
n −ub

n−1)+b(üM
n −üb

n−1)+kb(u
M
n −ub

n) = 0 (S94)

kb(u
b
n − uM

n ) + kp(u
b
n − uM

n+1) + b(üb
n − üM

n+1) = 0 (S95)

Here, b is inertance; K, kb and kp are stiffness on the main chain, on the branch chain in
series to inerter and on the branch chain in parallel to inerter, respectively; and uM

n and ub
n

represent displacements of mass M of the nth cell and the degree of freedom on the branch
chain connectted to the nth cell, respectively.

Substituting Eqns. (S10) and (S11) into Eqns. (S94) and (S95), we get:

−ω2

[
M + b −be−q

−beq b

]
+

[
2K −K(eq + e−q) + kp + kb −kpe

−q − kb
−kb − kpe

q kb + kp

]
=

[
0
0

]
(S96)

Dispersion relation can be obtained analytically solving the Eqn. (S96) which can be used to
find the expression for the edges of the band gap [1].

S7.1 Lower Edge of the Band Gap

We can find the lower edge of the band gap at q = π, where Eqn. (S96) becomes:

−ω2

[
M + b b

b b

]
+

[
4K + kb + kp −kb + kp
−kb + kp kb + kp

]
=

[
0
0

]
(S97)

Taking the smaller eigen-frequency, we arrive at:

ω =

√√√√√√(4kbb+M(kb + kp) + 4Kb)−

√
(−4kbb−M(kb + kp)− 4Kb)2

−4(Mb)(4Kkb + 4kbkp + 4Kkp)

2Mb
(S98)

Figure S8: Unit cell with spring, kp, in parallel to inerter.
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Eq. (S98) can be normalized by 2π
√

K/M :

fL =
1

2π

√√√√√√(4kbb+M(kb + kp) + 4Kb)−

√
(−4kbb−M(kb + kp)− 4Kb)2

−4(Mb)(4Kkb + 4kbkp + 4Kkp)

2Kb
(S99)

Taking µb = b/M , κb = kb/K and κp = kp/K, we get:

fL =
1

2π

√√√√χp −

√
χ2
p −

4(κb + κbκp + κp)

µb

(S100)

where χp = 2κb + (κb + κp)/(2µb) + 2.

S7.2 Upper Edge of the Band Gap

Similarly, we can find the upper edge of the band gap at q=0, where Eqn. (S96) becomes:

−ω2

[
M + b −b
−b b

]
+

[
kb + kp −kp − kb
−kb − kp kb + kp

]
= 0 (S101)

Taking the larger eigen-frequency, we arrive at:

ω =

√
kb + kp

b
(S102)

Eqn. (S102) can be normalized by 2π
√

K/M :

fU =
1

2π

√
M(kb + kp)

Kb
(S103)

Taking µb = b/M , κb = kb/K and κp = kp/K, we get:

fU =
1

2π

√
(κb + κp)

µb

(S104)

This is an important tunable parameter, kp, has been included in the inerter-based meta-
material unit cell as shown in Fig. S8. Stiffness across the terminals of an inerter can have
devastating effect on the band gap. As can be seen in Fig. S9, the presence of this stiffness
not only increases the lower edge frequency but also destroys the bandgap by reducing the
relative gap size. Hence, for the rest of the study kp is taken as zero. However, it is notewor-
thy to consider that in practical case stiffness across inerter has the potential to form the
bandgap lower than expected.
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S7.3 Convergence Limit µb ≫ κb and κp

Fig. S9 shows that as stiffness across inerter becomes large, the size of band gap diminishes
with lower edge edge of the bang shift to higher frequency. For µb ≫ κb and κp, Eqns. (S104)
and (S100) becomes:

fU =

√
ζ2

2π
(S105)

where ζ2 = (κb + κp)/µb.

(2πfL)
2 = χ′

p −
√

χ′
p
2 − 4ζ1 = χ′

p

(
1−

√
1− ζ ′1

)
(S106)

where χ′
p = 2κb + 2, ζ1 = (κb + κbκp + κp)/µb and ζ ′1 = 4ζ1/χ

′
p
2

The first two terms of the Taylor series from Eqn. (S23) are significant. Hence, from the
Eqns. (S106) and (S23) we arrive at:

(2πfL)
2 → χ′

p

(
1−

(
1− ζ ′1

2

))
= χ′

p

ζ ′1
2

=
2ζ1
χ′
p

(S107)

fL → 1

2π

√
2ζ1
χ′
p

=
1

2π

√
κb

µb(κb + 1)
+

κp

µb

(S108)

Taking κb = 1, we arrive at:

fL → 1

2π

√
2κp + 1

2µb

(S109)

Figure S9: Here, b = 106 and kb = 1 N/s. (a) Lower edge of the band gap. (b) relative size
of the band gap.
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For κp = 1 and µb = 106, we get:
fL ≈ 0.000195 (S110)

For µb ≫ κb and κp, the relative gap size converges to:

∆f =
fU − fL

fL
→

√
ζ2 −

√
2ζ1/χ′

p√
2ζ1/χ′

p

=

√
(κb + κp)(κb + 1)

κb + κbκp + κp

− 1 (S111)

Taking κb = 1, we arrive at:

∆f →

√
2(κp + 1)

2κp + 1
− 1 =

√
1 +

1

2κp + 1
− 1. (S112)

For κp = 1 and µb = 106, we get at:

∆f ≈ 15.5% (S113)
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S8 Square Lattice Formulation and Results

Real space and reciprocal lattice primitive vectors for square lattice with lattice constant a
(shown in Fig. S10(a) and (b), respectively) are defined as [7]:

a1 = ax̂

a2 = aŷ

b1 =
2π

a
x̂

b2 =
2π

a
ŷ

(S114)

Figure S10: (a) Unit cell of square lattice in real space. (b) Reciprocal lattice in the reciprocal
space and Brillouin zone (gray region) of the corresponding square lattice. (c) d̂1, d̂2, d̂3 and
d̂4 are unit vectors associated to the directions of the springs and inerters. (d) Irreducible
Brillouin zone (shaded gray square) for the square lattice. The dispersion relation is plotted
for wave vectors q along the direction determined by the M − Γ−X points.
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Taking d as the vector at the end points of unstrained springs, direction unit vectors as
shown in Fig. S10(c) can be defined as [9]:

d̂1 =
d1

|d1|
=

(
cos 0
sin 0

)
=

(
1
0

)
d̂2 =

d2

|d2|
=

(
cos 45
sin 45

)
=

(
1√
2
1√
2

)

d̂3 =
d3

|d3|
=

(
cos 90
sin 90

)
=

(
0
1

)
d̂4 =

d4

|d4|
=

(
cos 135
sin 135

)
=

(
− 1√

2
1√
2

)
(S115)

Degrees of freedom in inerter-based square lattice are:

Figure S11: Degrees of freedom in Square lattice.
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u(n) =

(
ux(n)
uy(n)

)
h(n) =

(
hx(n)
hy(n)

)
g(n) =

(
gx(n)
gy(n)

)
r(n) =

(
rx(n)
ry(n)

)
f(n) =

(
fx(n)
fy(n)

)
(S116)

where

n =

(
nx

ny

)
. (S117)

Here, u(n) is the displacement on the main chain of unit cell at position vector n with mass
M and stiffness K in the directions d̂1, d̂2, d̂3 and d̂4; h(n), g(n), r(n) and f(n) are degrees
of freedom at nth cell between the inerter with inertance b and the spring with stiffness kb
in the directions d̂1, d̂3, d̂2 and d̂4, respectively.

Newton’s equation of motion:

M ü(n) +K d̂1 ⊗ d̂1(u(n) + u(n+ a1) +K d̂1 ⊗ d̂1(u(n) + u(n− a1))

+K d̂2 ⊗ d̂2(u(n)− u(n+ a1 + a2) +K d̂2 ⊗ d̂2(u(n)− u(n− a1 − a2)

+K d̂3 ⊗ d̂3(u(n)− u(n+ a2) +K d̂3 ⊗ d̂3(u(n)− u(n− a2)

+K d̂4 ⊗ d̂4(u(n)− u(n− a1 + a2) +K d̂4 ⊗ d̂4(u(n)− u(n+ a1 − a2)

+kb d̂1 ⊗ d̂1(u(n)− h(n)) + b d̂1 ⊗ d̂1(u(n)− h(n− a1))

+kb d̂2 ⊗ d̂2(u(n)− r(n)) + b d̂2 ⊗ d̂2(u(n)− r(n− a1 − a2)

+kb d̂3 ⊗ d̂3(u(n)− g(n)) + b d̂3 ⊗ d̂3(u(n)− g(n− a2))

+kb d̂4 ⊗ d̂4(u(n)− f(n)) + b d̂4 ⊗ d̂4(u(n)− f(n+ a1 − a2))

= 0 (S118)

kb d̂1 ⊗ d̂1(h(n)− u(n)) + b d̂1 ⊗ d̂1(ḧ(n)− ü(n+ a1)) = 0 (S119)

kb d̂2 ⊗ d̂2(r(n)− u(n)) + b d̂2 ⊗ d̂2(r̈(n)− ü(n+ a1 + a2)) = 0 (S120)

kb d̂3 ⊗ d̂3(g(n)− u(n)) + b d̂3 ⊗ d̂3(g̈(n)− ü(n+ a2)) = 0 (S121)

kb d̂4 ⊗ d̂4(f(n)− u(n)) + b d̂4 ⊗ d̂4(f̈(n)− ü(n− a1 + a2)) = 0 (S122)

From Eqns. (S114), (S115), (S116), (S118), (S119), (S120), (S121) and (S122),
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Müx(0, 0) +K(ux(0, 0)− ux(−1, 0) +K(ux(0, 0)− ux(1, 0)

+kb(ux(0, 0)− hx(0, 0)) + b(üx(0, 0)− ḧx(−1, 0))

+
K

2
(ux(0, 0)− ux(1, 1)) +

K

2
(ux(0, 0)− ux(−1, 1))

+
K

2
(ux(0, 0)− ux(−1,−1)) +

K

2
(ux(0, 0)− ux(1,−1))

+
K

2
(uy(0, 0)− uy(1, 1))−

K

2
(uy(0, 0)− uy(−1, 1))

+
K

2
(uy(0, 0)− uy(−1,−1))− K

2
(uy(0, 0)− uy(1,−1))

+
kb
2
(ux(0, 0)− rx(0, 0)) +

b

2
(üx(0, 0)− r̈x(−1,−1))

+
kb
2
(ux(0, 0)− fx(0, 0)) +

b

2
(üx(0, 0)− f̈x(1,−1))

+
kb
2
(uy(0, 0)− ry(0, 0)) +

b

2
(üy(0, 0)− r̈y(−1,−1))

−kb
2
(uy(0, 0)− fy(0, 0))−

b

2
(üy(0, 0)− f̈y(1,−1))

= 0 (S123)

Müy(0, 0) +K(uy(0, 0)− uy(0,−1)) +K(uy(0, 0)− uy(0, 1))

+kb(uy(0, 0)− gy(0, 0)) + b(üy(0, 0)− g̈y(0,−1))

+
K

2
(uy(0, 0)− uy(1, 1) +

K

2
(uy(0, 0)− uy(−1, 1)

+
K

2
(uy(0, 0)− uy(−1,−1) +

K

2
(uy(0, 0)− uy(1,−1)

+
K

2
(ux(0, 0)− ux(1, 1)−

K

2
(ux(0, 0)− ux(−1, 1)

+
K

2
(ux(0, 0)− ux(−1,−1)− K

2
(ux(0, 0)− ux(1,−1)

+
kb
2
(uy(0, 0)− ry(0, 0)) +

b

2
(üy(0, 0)− r̈y(−1,−1))

+
kb
2
(uy(0, 0)− fy(0, 0)) +

b

2
(üy(0, 0)− f̈y(1,−1))

+
kb
2
(ux(0, 0)− rx(0, 0)) +

b

2
(üx(0, 0)− r̈x(−1,−1))

−kb
2
(ux(0, 0)− fx(0, 0))−

b

2
(üx(0, 0)− f̈x(+1,−1))

= 0 (S124)

kb(hx(0, 0)− ux(0, 0)) + b(ḧx(0, 0)− üx(1, 0) = 0 (S125)

kb(gy(0, 0)− uy(0, 0)) + b(g̈y(0, 0)− üy(0, 1) = 0 (S126)

kb
2
(rx(0, 0)− ux(0, 0)) +

b

2
(r̈x(0, 0)− üx(1, 1))

+
kb
2
(ry(0, 0)− uy(0, 0)) +

b

2
(r̈y(0, 0)− üy(1, 1))

= 0 (S127)
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kb
2
(ry(0, 0)− uy(0, 0)) +

b

2
(r̈y(0, 0)− üy(1, 1))

+
kb
2
(rx(0, 0)− ux(0, 0)) +

b

2
(r̈x(0, 0)− üx(1, 1))

= 0 (S128)

kb
2
(fx(0, 0)− ux(0, 0)) +

b

2
(f̈x(0, 0)− üx(−1, 1))

−kb
2
(fy(0, 0)− uy(0, 0))−

b

2
(f̈y(0, 0)− üy(−1, 1))

= 0 (S129)

kb
2
(fy(0, 0)− uy(0, 0)) +

b

2
(f̈y(0, 0)− üy(−1, 1))

−kb
2
(fx(0, 0)− ux(0, 0))−

b

2
(f̈x(0, 0)− üx(−1, 1))

= 0 (S130)

The components of degrees of freedom in Eqn. (S116) are define according to the Bloch
theorem [5],

ux(n) = Uxe
nxaqx+nyaqy+iωt (S131)

uy(n) = Uye
nxaqx+nyaqy+iωt (S132)

hx(n) = Hxe
nxaqx+nyaqy+iωt (S133)

gy(n) = Gye
nxaqx+nyaqy+iωt (S134)

rx(n) = Rxe
nxaqx+nyaqy+iωt (S135)

ry(n) = Rye
nxaqx+nyaqy+iωt (S136)

fx(n) = Fxe
nxaqx+nyaqy+iωt (S137)

fy(n) = Fye
nxaqx+nyaqy+iωt (S138)

where qx and qy are wave vectors in the reciprocal space in x and y directions, respectively.
Substituting Eqns. (S131), (S132), (S133), (S134), (S135), (S136), (S137) and (S138) into
the the Eqns. (S123), (S124), (S125), (S126), (S127), (S128), (S129) and (S130), we get

−ω2[M ] + [K] = 0 (S139)

where M is mass operator and K is stiffness operator as follows

[K] =



α1,1 + 2kb α1,2 −kb 0 −kb
2

−kb
2

−kb
2

kb
2

α2,1 α2,2 + 2kb 0 −kb −kb
2

−kb
2

kb
2

−kb
2

−kb 0 kb 0 0 0 0 0
0 −kb 0 kb 0 0 0 0

−kb
2

−kb
2

0 0 kb
2

kb
2

0 0

−kb
2

−kb
2

0 0 kb
2

kb
2

0 0

−kb
2

kb
2

0 0 0 0 kb
2

−kb
2

kb
2

−kb
2

0 0 0 0 −kb
2

kb
2


(S140)
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[M ] =



M + 2b 0 −be−qx 0 − b
2
β3 − b

2
β3 − b

2
β4

b
2
β4

0 M + 2b 0 −b − b
2
β3 − b

2
β3

b
2
β4 − b

2
β4

−beqx 0 b 0 0 0 0 0
0 −beqy 0 b 0 0 0 0

− b
2
β1 − b

2
β1 0 0 b

2
b
2

0 0
− b

2
β1 − b

2
β1 0 0 b

2
b
2

0 0
− b

2
β2

b
2
β2 0 0 0 0 b

2
− b

2
b
2
β2 − b

2
β2 0 0 0 0 − b

2
b
2


(S141)

where,

α1,1 = 2K −Keqx −Ke−qx +
K

2
(4− β1 − β2 − β3 − β4)

α1,2 =
K

2
(−β1 + β2 − β3 + β4)

α2,1 =
K

2
(−β1 + β2 − β3 + β4)

α2,2 = 2K −Keqy −Ke−qy +
K

2
(4− β1 − β2 − β3 − β4)

β1 = eqx+qy

β2 = e−qx+qy

β3 = e−qx−qy

β4 = eqx−qy

(S142)

The degrees of freedom in hy and gx have been constrained as can be seen. The following
matrix operation on both M and K operators will constrain two more degrees of freedoms.

KC7 −→ KC7 −KC8

KC8 −→ 08×1

KR7 −→ KR7 −KR8

KR8 −→ 01×8

KC5 −→ KC5 +KC6

KC6 −→ 08×1

KR5 −→ KR5 +KR6

KR6 −→ 01×8

(S143)

MC7 −→ MC7 −MC8

MC8 −→ 08×1

MR7 −→ MR7 −MR8

MR8 −→ 01×8

MC5 −→ MC5 +MC6

MC6 −→ 08×1

MR5 −→ MR5 +MR6

MR6 −→ 01×8

(S144)
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This will result in a 6× 6 M and K operators. Solving for eigenvalue problem will give the
results.

Figure S12: Band structure of inerter-based square lattice.

Figure S13: Zoomed version of Fig. S12 showing the band gap.

Fig. S12 and Fig. S13 shows the band structure for wave travelling in directionM−Γ−X−M .
Fig. S14 and Fig. S15 shows the band structure in all directions of qx and qy.
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Figure S14: Full band structure for inerter based square lattice.

Figure S15: Zoomed band structure for inerter based square lattice showing the bandgap.
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S9 Triangular Lattice Formulation and Results

Real space and reciprocal lattice primitive vectors for triangular lattice with lattice constant
a (shown in Fig. S16(a) and (b), respectively) are defined as [7]:

a1 = ax̂

a2 =
a

2
x̂+

√
3a

2
ŷ

b1 =
4π√
3a

(√
3

2
x̂− 1

2
ŷ

)
b2 =

4π√
3a

ŷ

(S145)

Figure S16: (a) Unit cell of triangular lattice in real space. (b) Reciprocal lattice in the
reciprocal space and Brillouin zone (gray region) of the corresponding triangular lattice. (c)
d̂1, d̂2 and d̂3 are unit vectors associated to the directions of the springs and inerters. (d)
Irreducible Brillouin zone (shaded gray hexagon) for the triangular lattice. The dispersion
relation is plotted for wave vectors q along the direction determined by the Γ−K−M points.
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Taking d as the vector at the end points of unstrained springs, direction unit vectors as
shown in Fig. S16(c) can be defined as [9]:

d̂1 =
d1

|d1|
=

(
cos 0
sin 0

)
=

(
1
0

)
d̂2 =

d2

|d2|
=

(
cos 60
sin 60

)
=

( 1
2√
3
2

)
d̂3 =

d3

|d3|
=

(
cos 120
sin 120

)
=

(
−1

2√
3
2

) (S146)

Degrees of freedom in inerter-based triangular lattice are:

Figure S17: Degrees of freedom in triangular lattice.

u(n) =

(
ux(n)
uy(n)

)
h(n) =

(
hx(n)
hy(n)

)
r(n) =

(
rx(n)
ry(n)

)
f(n) =

(
fx(n)
fy(n)

)
(S147)
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where,

n =

(
nx

ny

)
(S148)

Here, u(n) is the displacement on the main chain of unit cell at position vector n with mass
M and stiffness K in the directions d̂1, d̂2 and d̂3; h(n), r(n) and f(n) are degrees of
freedom at nth cell between the inerter with inertance b and the spring with stiffness kb in
the directions d̂1, d̂2 and d̂3, respectively.

Newton’s equation of motion:

M ü(n) +K d̂1 ⊗ d̂1(u(n)− u(n+ a1) +K d̂1 ⊗ d̂1(u(n)− u(n− a1))

+K d̂2 ⊗ d̂2(u(n)− u(n+ a2) +K d̂2 ⊗ d̂2(u(n)− u(n− a2)

+K d̂3 ⊗ d̂3(u(n)− u(n+ a2 − a1) +K d̂3 ⊗ d̂3(u(n)− u(n− a2 + a1)

+kb d̂1 ⊗ d̂1(u(n)− h(n)) + b d̂1 ⊗ d̂1(u(n)− h(n− a1))

+kb d̂2 ⊗ d̂2(u(n)− r(n)) + b d̂2 ⊗ d̂2(u(n)− r(n− a2))

+kb d̂3 ⊗ d̂3(u(n)− f(n)) + b d̂3 ⊗ d̂3(u(n)− f(n− a2 + a1))

= 0 (S149)

kb d̂1 ⊗ d̂1(h(n)− u(n)) + b d̂1 ⊗ d̂1(ḧ(n)− ü(n+ a1)) = 0 (S150)

kb d̂2 ⊗ d̂2(r(n)− u(n)) + b d̂2 ⊗ d̂2(r̈(n)− ü(n+ a2)) = 0 (S151)

kb d̂3 ⊗ d̂3(f(n)− u(n)) + b d̂3 ⊗ d̂3(f̈(n)− ü(n− a2 + a1)) = 0 (S152)

From Eqns. (S145), (S146), (S147), (S149), (S150), (S151) and (S152),

Müx(0, 0) +K(ux − ux(1, 0)) +K(ux(0, 0)− ux(−1, 0))

+
K

4

(
ux(0, 0)− ux

(
1

2
,

√
3

2

))
+

K

4

(
ux(0, 0)− ux

(
− 1

2
,−

√
3

2

))
+
K

4

(
ux(0, 0)− ux

(
− 1

2
,

√
3

2

))
+

K

4

(
ux(0, 0)− ux

(
1

2
,−

√
3

2

))
+

√
3K

4

(
uy(0, 0)− uy

(
1

2
,

√
3

2

))
+

√
3K

4

(
uy(0, 0)− uy

(
− 1

2
,−

√
3

2

))
−
√
3K

4

(
uy(0, 0)− uy

(
− 1

2
,

√
3

2

))
−

√
3K

4

(
uy(0, 0)− uy

(
1

2
,−

√
3

2

))
+kb(ux(0, 0)− hx(0, 0)) + b(üx(0, 0)− ḧx(−1, 0))

+
kb
4
(ux(0, 0)− rx(0, 0)) +

b

4

(
üx(0, 0)− r̈x

(
− 1

2
,−

√
3

2

))
+

√
3kb
4

(uy(0, 0)− ry(0, 0)) +

√
3b

4

(
üy(0, 0)− r̈y

(
− 1

2
,−

√
3

2

))
+
kb
4
(ux(0, 0)− fx(0, 0)) +

b

4

(
üx(0, 0)− f̈x

(
1

2
,−

√
3

2

))
−
√
3kb
4

(uy(0, 0)− fy(0, 0))−
√
3b

4

(
üy(0, 0)− f̈y

(
1

2
,−

√
3

2

))

= 0 (S153)
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Müy(0, 0)

+

√
3K

4

(
ux(0, 0)− ux

(
1

2
,

√
3

2

))
+

√
3K

4

(
ux(0, 0)− ux

(
− 1

2
,−

√
3

2

))
−
√
3K

4

(
uy(0, 0)− uy

(
− 1

2
,

√
3

2

))
−

√
3K

4

(
uy(0, 0)− uy

(
1

2
,−

√
3

2

))
−
√
3K

4

(
ux(0, 0)− ux

(
− 1

2
,

√
3

2

))
−

√
3K

4

(
ux(0, 0)− ux

(
1

2
,−

√
3

2

))
+
3K

4

(
uy(0, 0)− uy

(
1

2
,

√
3

2

))
+

3K

4

(
uy(0, 0)− uy

(
− 1

2
,−

√
3

2

))
+

√
3kb
4

(ux(0, 0)− rx(0, 0)) +

√
3b

4

(
üx(0, 0)− r̈x

(
− 1

2
,−

√
3

2

))
+
3kb
4

(uy(0, 0)− ry(0, 0)) +
3b

4

(
üy(0, 0)− r̈y

(
− 1

2
,−

√
3

2

))
−
√
3kb
4

(ux(0, 0)− fx(0, 0))−
√
3b

4

(
üx − f̈x

(
1

2
,−

√
3

2

))
+
3kb
4

(uy(0, 0)− fy(0, 0)) +
3b

4

(
üy(0, 0)− f̈y

(
1

2
,−

√
3

2

))

= 0 (S154)

kb(hx(0, 0)− ux(0, 0)) + b(ḧx(0, 0)− üx(1, 0)) = 0 (S155)

kb
4
(rx(0, 0)− ux(0, 0)) +

b

4

(
r̈x(0, 0)− üx

(
1

2
,

√
3

2

))
+

√
3kb
4

(ry(0, 0)− uy(0, 0)) +

√
3b

4

(
r̈y(0, 0)− üy

(
1

2
,

√
3

2
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4

(
r̈y(0, 0)− üy

(
1

2
,

√
3

2

)) = 0 (S157)

kb
4
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b

4

(
f̈x(0, 0)− üx
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− 1

2
,

√
3

2

))
−
√
3kb
4

(fy(0, 0)− uy(0, 0))−
√
3b

4

(
f̈y(0, 0)− üy

(
− 1

2
,

√
3

2

)) = 0 (S158)

−
√
3kb
4

(fx(0, 0)− ux(0, 0))−
√
3b

4

(
f̈x(0, 0)− üx

(
− 1

2
,

√
3

2

))
+
3kb
4

(fy(0, 0)− uy(0, 0)) +
3b

4

(
f̈y(0, 0)− üy

(
− 1

2
,

√
3

2

)) = 0 (S159)

The components of degrees of freedom in Eqn.(S147) are defined according to the Bloch
theorem [5],

ux(n) = Uxe
nxaqx+nyaqx+iωt (S160)
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uy(n) = Uye
nxaqx+nyaqx+iωt (S161)

hx(n) = Hxe
nxaqx+nyaqx+iωt (S162)

rx(n) = Rxe
nxaqx+nyaqx+iωt (S163)

ry(n) = Rye
nxaqx+nyaqx+iωt (S164)

fx(n) = Fxe
nxaqx+nyaqx+iωt (S165)

fy(n) = Fye
nxaqx+nyaqy+iωt (S166)

where qx and qy are wave vectors in the reciprocal space in x and y directions, respectively.
Substituting Eqns. (S160), (S161), (S162), (S163), (S164), (S165) and (S166) into the the

equations (S153), (S154), (S155), (S156), (S157), (S158) and (S159), we get

−ω2[M ] + [K] = 0 (S167)

where M is mass operator and K is stiffness operator as follows

[K] =



α1,1 +
3kb
2

α1,2 −kb −kb
4

−
√
3kb
4

−kb
4

√
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4
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3kb
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0 −
√
3kb
4

−3kb
4

√
3kb
4

−3kb
4

−kb 0 kb 0 0 0 0

−kb
4

−
√
3kb
4

0 kb
4

√
3kb
4

0 0
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√
3kb
4

−3kb
4

0
√
3kb
4

3kb
4

0 0

−kb
4

√
3kb
4

0 0 0 kb
4

−
√
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4√

3kb
4
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4
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4
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[M ] =



M + 3b
2 0 −be−qx − b
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√
3b
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4β4

√
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4 β4

0 M + 3b
2 0 −

√
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4 β3 − 3b

4 β3

√
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4 β4
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4 β1 0 b

4

√
3b
4 0 0

−
√
3b
4 β1 − 3b

4 β1 0
√
3b
4

3b
4 0 0

− b
4β2

√
3b
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where,

α1,1 = 2K −Keqx −Ke−qx +
K

4

(
4− β1 − β3 − β2 − β4

)
α1,2 =

√
3K

4
(−β1 − β3 + β2 + β4)

α2,1 =

√
3K

4
(−β1 − β3 + β2 + β4)

α2,2 =
3K

4
(4− β1 − β3 − β2 − β4)

β1 = e
1
2
qx+

√
3

2
qy

β2 = e−
1
2
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√
3

2
qy

β3 = e−
1
2
qx−

√
3

2
qy

β4 = e
1
2
qx−

√
3

2
qy

(S170)
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The degrees of freedom in hy has been constrained as can be seen. The following matrix
operation on both M and K operators will constrain two more degrees of freedoms.

KC6 −→ KC6 −
√
3KC7

KC7 −→ 07×1

KR6 −→ KR6 −
√
3KR7

KR7 −→ 01×7

KC4 −→ KC4 +
√
3KC5

KC5 −→ 07×1

KR4 −→ KR4 +
√
3KR5

KR5 −→ 01×7

(S171)

MC6 −→ MC6 −
√
3MC7

MC7 −→ 07×1

MR6 −→ MR6 −
√
3MR7

MR7 −→ 01×7

MC4 −→ MC4 +
√
3MC5

MC5 −→ 07×1

MR4 −→ MR4 +
√
3MR5

MR5 −→ 01×7

(S172)

This will result in a 5× 5 M and K operators. Solving for eigenvalue problem will give the
results for band structure (shown in Fig. S20 and S21) of triangular lattice.

Figure S18: Band structure of inerter-based triangular lattice.

Fig. S18 and Fig. S19 shows the band structure for wave travelling in directionM−Γ−X−M .
Fig. S20 and Fig. S21 shows the band structure in all directions of qx and qy.
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Figure S19: Zoomed version of Fig. S18 showing the band gap.

Figure S20: Full band structure for inerter based triangular lattice.

42



Figure S21: Zoomed band structure for inerter based triangular lattice showing the bandgap.
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