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We report a family of designs and numerical simulations of cubic elastic
metamaterials inspired by lipidic cubic phases (LCPs). Since LCPs are triply
periodic minimal surfaces spontaneously formed in natural physical and
chemical processes, our designs can be suitable candidates for high-through-
put fabrication through self-assembly. This potential advantage may over-
come the challenge of time cost in the traditional unit-by-unit additive
manufacturing processes. We analyze the bio-inspired designs of primitive,
gyroid, and diamond configurations by focusing on their geometry, symmetry,
and elastic behaviors. We lay out the detailed numerical simulation proce-
dures to extract the effective macroscopic elastic moduli of cubic metamate-
rials. We proceed with parametric studies regarding internal surface
thickness and constituent base material properties. We also discuss their
implications in terms of the metamaterials’ isotropy and compressibility. Our
results can provide guidelines for next-generation elastic metamaterials that
can be massively produced with high efficiency.

INTRODUCTION

Metamaterials are architected composites whose
properties and functionalities derive mainly from
their internal geometries. They have found numer-
ous applications in acoustics,1–4 photonics,5–9 fluid
dynamics,10–12 thermodynamics,13 and biomedical
devices.14,15 Most metamaterials to date are fabri-
cated in additive manufacturing processes such as
popular 3D printing techniques.3,16–20 The time cost
of fabrication could become a serious bottleneck in
the future development of this research field, espe-
cially when we need a sample of millions of unit
cells.21–23 It is a long-standing challenge to search
for high-throughput alternatives as more efficient
approaches in design and fabrication.

In the realm of biophysics and biochemistry, self-
assembly is an efficient way to form many different
geometrical patterns.24 In particular, the lipid
bilayer, abundant in most cell membranes, can
self-organize into crystalline morphological phases
with spatial periodicity.25 While lamellar and

hexagonal phases26 are periodic in one and two
dimensions, ‘‘lipidic cubic phases’’ (LCPs)27 are
periodic in all three dimensions. These novel struc-
tures can facilitate protein crystallization,28 gene
therapy,29 medical imaging,30 and medical device
development.31–34 Although most research on LCPs
focused on the biophysical behaviors35–42 and bio-
chemical functionalities,43–48 their geometrical/rhe-
ological properties are an important aspect as
well.49–54 For example, LCP phases have been
proven to be the most rigid crystallized phases55

compared to other morphologies.56–61

Lipid molecules are hydrophilic at one end and
hydrophobic at the other end. They can sponta-
neously morph into LCPs in aqueous solutions
because of the strong effects of surface tension,
which locally minimizes the surface area and
results in zero mean curvature everywhere.62 The
building blocks here assemble into cubic unit cells,
which in turn self-tessellate into nicely periodic and
intersection-free arrangements in three dimensions,
known as triply periodic minimal surfaces (TPMS).
Using similar mechanisms driven by surface ten-
sion, La et al.38 reported the self-assembly of
amphiphilic dendritic-linear block copolymers into
polymer cubosomes, while Jain et al.63 discovered
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that poly diblock copolymers can form various
ordered and disordered phases through self-assem-
bly. Additionally, Percec et al.64 observed the self-
assembly of Janus dendrimers, resulting in den-
drimersomes with diverse structures. Hence, we
expect that similar processes exploiting nature’s
tendency to minimize surface energy could be
developed as potential high-throughput techniques
to manufacture next-generation cubic
metamaterials.

Previous research efforts on TPMS include solid65

and sheet-like networks.66,67 Furthermore, other
researchers also investigated different geometries
within the TPMS families.68–72 In addition, studies
also reported the effective behaviors of TPMS archi-
tecture with different base materials, including
ceramics,73 stainless steel,74 metals,75 and poly-
mers.69,76,77 However, most studies focus on one or
two loading directions only for the uni-axial defor-
mation behavior. Building on the existing literature,
we draw the attention to multi-directional properties
of the TPMS structures with detailed analyses of the
anisotropic metamaterial behaviors in full.

In this article, we employ bio-mimicry to design
cubic elastic metamaterials based on LCP mor-
phologies. We investigate the anisotropic behaviors
of primitive, gyroid, and diamond structures in
terms of direction-dependent effective elastic prop-
erties. First, we establish a rigorous framework to
construct the metamaterial geometries, perform
numerical simulations, and extract the effective
properties. Then, we conduct parametric studies on
the surface thickness and base material properties.
Lastly, we further analyze our results in terms of
effective anisotropy and effective compressibility.
Our findings can provide guidance for the design,
fabrication, and characterization of an assortment
of cubic elastic metamaterials for load-bearing
purposes.

GEOMETRY, SYMMETRY, AND ELASTICITY

Bio-inspired Pattern Designs

Depending on the temperature and solvent compo-
sition,27 three different types of LCPs may form:
primitive (P), gyroid (G), and diamond (D). All are
triply periodic minimal surfaces (TPMS) and can be
mathematically defined as the following surfaces
in the three-dimensional Primitive (P): Cartesian
space.78,79

Primitive (P):

cosX þ cosY þ cosZ ¼ 0; ð1aÞ

Gyroid (G):

sinX cosY þ sinY cosZþ cosX sinZ ¼ 0; ð1bÞ

Diamond (D):

sinX sinY sinZþ sinX cosY cosZ

þ cosX sinY cosZþ cosX cosY sinZ ¼ 0:
ð1cÞ

In these equations, X ¼ 2apx;Y ¼ 2bpy;Z ¼ 2cpz,
where x, y and z are the spatial coordinates, and a,
b, and c are parameters that control the size of the
unit cell in three different Cartesian directions,
respectively. Hence, the unit cell volume is inver-
sely proportional to the product of all three control
parameters, abc. Figure 1 shows our computational
rendering of the geometries constructed using
Eq. 1a–c for primitive, gyroid, and diamond TPMS,
respectively. Both unit cells (left column) and the
3 � 3 � 3 assemblies (right column) are illustrated.

Spatial Symmetries

On one hand, all three geometries in Fig. 1 belong
to the same Oh (‘‘O’’ for all symmetries of a regular
octahedron, ‘‘h’’ for the mirror symmetry about the

Fig. 1. Triply periodic minimal surfaces (TPMS) based on lipidic
cubic phase (LCP) morphologies: (a) primitive, (b) gyroid, (c)
diamond. Left column: unit cells; right column: 3� 3� 3 assemblies.
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horizontal plane) crystallographic point group with
48 elements of symmetry in the following types:
inversion, mirror plane, and two-, three-, and four-
fold rotational symmetries. Here, ‘‘n-fold’’ means
rotational symmetry operations of ð360=nÞ�. On the
other hand, we have three different types of crys-
tallographic space groups:

� Im3m for primitive;
� Ia3d for gyroid;
� Pn3m for diamond.

A total of four indices completely describe the
symmetries in these space groups. The first index
represents the type of Bravais lattice in three
dimensions (‘‘P’’ for primitive, ‘‘I’’ for body-centered).
The second index represents the translation direc-
tion perpendicular to and after (100) plane symme-
try operation (‘‘m’’ for the simple mirror reflection
without any glide or translation, ‘‘a’’ for gliding half
of the unit cell along one of the lattice vectors, and
‘‘n’’ for gliding half of the unit cell along the diagonal
of the mirror plane). The third index, ‘‘3,’’ shows the
three-fold rotational symmetry in [111] direction
with additional inversion. The fourth index denotes
the translation perpendicular to and after (110)
plane symmetry operation (‘‘m’’ for the simple
mirror reflection without any glide or translation,
‘‘d’’ for gliding a quarter of the unit cell along the
diagonal of the mirror plane).

Cubic Elasticity

The spatial symmetries discussed above guaran-
tee the following form of effective homogenized
constitutive relations80–83 in the linear elastic
regime for all three geometries illustrated in Fig. 1.
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where rij and eij are the components of stress and
strain tensors, respectively. This entails that there
are only three independent effective moduli: C11,
C12, and C44. While isotropic elasticity can be
completely specified by two independent parame-
ters, we can designate cubic elasticity as the
‘‘simplest’’ anisotropic elastic behavior since all
other types of anisotropic elasticity would need
more than three independent material parameters.
It is also important to emphasize that having three-
fold (120�) rotational symmetries about four axes
along the four cubic body diagonals (i.e., the space
diagonals) is sufficient to guarantee the cubic

elasticity detailed by Eq. 2. Contrary to some pop-
ular misconceptions,84–98 it is not necessary for the
unit cell geometry to have any mirror plane or any
four-fold (90�) rotational symmetries.83,99,100

III. NUMERICAL IMPLEMENTATION

We integrate multiple commercial software plat-
forms to realize the construction, simulation, and
post-processing of our numerical analyses.

Geometry Construction

Based on LCP geometry described in Eq. 1a–c, we
first create metamaterial unit cell geometries with a
discrete set of nodal coordinates in MATLAB. These
nodes are used to generate triangular surface
elements in the engineering design software SOLID-

WORKS where surface meshing is generated via the
MESH WIZARD module. Then, we use the mesh to
create simulations with element type S3 on the
Abaqus finite element platform.

Simulation Setup

We adopt an efficient method to extract effective
properties of periodic metamaterials by using only
one unit cell in finite element simulations.101,102

This requires that we apply the appropriate bound-
ary conditions to imitate the internal deformation
field in a piece of triply periodic metamaterial with a
large number of unit cells. The approach allows us
to delineate the intrinsic effective properties of the
metamaterials without any influence of external
factors.

Aiming at the extraction of effective elastic mod-
uli, C11, C12, and C44, of the metamaterial, we
prescribe the macroscopic strain field to each type of
unit cell and obtain the corresponding stresses by
finite element simulations. In principle, this process
can be done in a coordinate-independent manner.
For simplicity, we fix the center of the unit cell at
the origin of the Cartesian coordinates in our setup.
This allows us to prescribe all three displacement
components, u1, u2, and u3, for all nodes on the six
boundary faces of the cubic unit cell as

u1
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u3

2
64

3
75 ¼

e11 e12 e13

e12 e22 e23
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2
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3
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X1
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X3

2
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3
75 ð3Þ

where X1, X2, and X3 are the position coordinates of
each node on the six boundary faces in the un-
deformed original configuration. We note that this
results in equal and opposite displacements applied
to the pair of nodes on the opposing boundary faces.

As shown in Eq. 2, the cubic symmetry guaran-
tees that there is no coupling between normal/shear
strains to shear/normal stresses. This fact ensures
that we only need to apply two scenarios of strain
fields in order to extract all effective metamaterial
properties: one uni-axial normal strain (e.g., e11; see
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the second column of Fig. 2) and one shear strain
(e.g., e12; see the third column of Fig. 2). Since there
is no normal shear coupling in the linear regime, we
can combine them and prescribe the following strain
tensor in all simulations:

einput ¼
e11 e12 0

e21 0 0

0 0 0

2
64

3
75 ð4Þ

In all simulations, we use the same constituent base
material with isotropic elasticity defined by two
parameters, Young’s modulus E0 and Poisson’s ratio
m0. Since all effective moduli of the metamaterial
design proportionally scale with E0, we only need to
conduct parametric studies on Poisson’s ratio of the
base constituent material. In addition, we also vary
the thickness, t, of the TPMS geometry in each unit
cell in the range from t=a ¼ 0:001 to t=a ¼ 0:1 where
a denotes the length of the cubic unit cell or,
equivalently, the lattice constant of the
metamaterial.

Post-Simulation Data Extraction

To calculate the homogenized effective stress
components, we use the same sets of nodes where
we prescribe the displacement boundary conditions.
We extract the reaction force vector, Fi for i ¼ 1; 2; 3,
at each of those nodes and further calculate the
numerical values of the stress components by

rij ¼
1

Aj

X
Fi: ð5Þ

where the summation is taken over all nodes on one of
the six cubic unit cell boundary surfaces and Aj

denotes the surface area. Based on the extracted
effective stress tensor, we then calculate the normal-
ized effective moduli of the metamaterial designs

C11 ¼ðr11=e11Þ=E0; ð6aÞ

C12 ¼ðr22=e11Þ=E0; ð6bÞ

Fig. 2. Original and deformed shapes of metamaterial unit cells: (a) primitive, (b) gyroid, and (c) diamond. The first column shows the un-
deformed geometries. The second column shows the unit cell shapes after applying normal strain in the horizontal direction. The third column
shows the unit cell shapes after applying shear strain in the plane.
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C44 ¼ðr12=e12Þ=E0: ð6cÞ

Computational Convergence

To ensure the precision of our numerical results,
we conduct mesh convergence studies on each of the
metamaterial designs. We vary the number of nodes
from N ¼ 2; 000 to N ¼ 80; 000 for each unit cell
geometry and compare the final results in terms of
normalized effective moduli C11;C12; and C44. We
calculate comparative percentage differences among
cases with different N. The differences become <
0:1% for N > 10;000 in the primitive design,
N > 12; 000 in the gyroid design, and N > 14; 000 in
the diamond design. Thus, we use N ¼ 10; 000,
N ¼ 12; 000, and N ¼ 14; 000 for primitive, gyroid,
and diamond geometries, respectively, in all plots of
results presented in this article.

RESULTS AND DISCUSSION

The LCPs formed in typical biochemical labora-
tory settings have an average surface thickness
ratio of 4% in terms of lipid bilayer thickness over
unit cell size.103 Besides, the lipid bilayers, as a soft
bio-material, are usually regarded as nearly incom-
pressible with an average Poisson’s ratio of 0.49.104

Hence, we start with two sets of parametric study:
varying Poisson’s ratios with a fixed thickness t=a ¼
0:04 of the internal surface and varying thickness
with a fixed Poisson’s ratio m0 ¼ 0:49 of the base
constituent material. The results are shown in
Fig. 3. Analyzing the data, we first confirm that
all cases satisfy the structural stability
requirements:99

C11 > 0; �C11=2<C12 <C11; C44 >0: ð7Þ

As shown in Fig. 3 (left column), for the fixed
internal surface thickness t=a ¼ 0:04, the normal-
ized effective metamaterial moduli, C11 and C12, rise
monotonically with increasing Poisson’s ratio, m0, of
the base constituent material. In contrast, C44

decreases monotonically with increasing Poisson’s
ratio of the base constituent material. These trends
are true for all three unit cell designs. As for Fig. 3
(right column), where Poisson’s ratio of the base
constituent material is fixed at m0 ¼ 0:49, the
increase of internal surface thickness, t, makes all
normalized effective metamaterial moduli of all
three metamaterial designs higher. The elastic
stiffness of metamaterials scales almost linearly
with the internal surface thickness. A comparison
among Fig. 3b, d, and f shows that the diamond
design is the stiffest among the three, while the
primitive design is the least stiff with equal surface
thickness and same constituent material.

Next, we also calculate the effective ‘‘principal
elasticities’’ as more informative property parame-
ters of the metamaterials:80

j ¼ ðC11 þ 2C12Þ=3; ð8aÞ

l1 ¼ ðC11 � C12Þ=2; ð8bÞ

l2 ¼ C44: ð8cÞ

where j denotes the effective bulk modulus, and l1,
l2 denote two direction-dependent effective shear
moduli. As eigenvalues of the stiffness matrix in
Eq. 2 with different multiplicities, j, l1, and l2 are
associated with one-, two-, and three-dimensional
eigenvector spaces, respectively, in the six-dimen-
sional vector space of all possible elastic strains.
Therefore, the structural stability requirements
listed in Eq. 7 are exactly equivalent to

j> 0; l1 > 0; l2 > 0: ð9Þ

Figure 4 presents the parametric results in terms of
these normalized effective moduli (i.e., principal
stiffness measures) for all three metamaterial
designs. They all satisfy Eq. 9. In Fig. 4 (left column),
similar trends are present for primitive, gyroid, and
diamond designs. For the same fixed internal surface
thickness t ¼ 0:04a, the normalized effective bulk
modulus j of metamaterials gradually rises with
increasing Poisson’s ratio of the base constituent
material. Unlike j, the two normalized effective
shear moduli l1 and l2 decrease monotonically. The
maximum value of l2 is similar for all three unit cell
designs at about 0.045 when the base constituent
material Poisson’s ratio is at m0 ¼ 0. We also observe a
critical base constituent material Poisson’s ratio, mc,
where the normalized effective bulk modulus j rises
above l2 (i.e., we get mc ¼ m0 when j ¼ l2). For the
three different unit cell designs, we have this critical
value in the order of mcðPrimitiveÞ>
mcðGyroidÞ> mcðDiamondÞ. Compared to primitive
and gyroid, j and l2 are consistently higher in
diamond design, which has j � l1 at m0 ¼ 0 and j ¼
l2 at m0 ¼ 0:2.

Figure 4 (right column) plots the normalized effec-
tive bulk and shear moduli, j, l1, and l2, for all three
metamaterial designs with the fixed base constituent
material property of m0 ¼ 0:49. Similar to data in
Fig. 3 (right column), all effectively increase mono-
tonically with increasing internal surface thickness t.
Almost all scale linearly with t with the only excep-
tion being l2 of the primitive design. Among all
designs, the diamond configuration has the largest
effective bulk modulus j for all ranges of thickness.
The same is true for shear modulus l1 and l2.
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Fig. 3. Effective macroscopic moduli C11, C12, C44 of different metamaterial designs with: (a) primitive design with varying Possion’s ratios m0 at
the fixed internal surface thickness t=a ¼ 0:04. (b) Primitive design with varying internal surface thicknesses t=a at fixed Possion’s ratio
m0 ¼ 0:49. (c) Gyroid design with varying Possion’s ratios m0 at the fixed internal surface thickness t=a ¼ 0:04. (d) Gyroid design with varying
internal surface thicknesses t=a at the fixed Possion’s ratio m0 ¼ 0:49. (e) Diamond design with varying Possion’s ratios m0 at the fixed internal
surface thickness t=a ¼ 0:04. (f) Diamond design with varying internal surface thicknesses t=a at the fixed Possion’s ratio m0 ¼ 0:49.
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Fig. 4. Effective macroscopic bulk and shear moduli j, l1, l2 of different metamaterial designs with: (a) psrimitive design with varying Possion’s
ratios m0 at the fixed internal surface thickness t=a ¼ 0:04. (b) Primitive design with varying internal surface thicknesses t /a at the fixed Possion’s
ratio m0 ¼ 0:49. (c) Gyroid design with varying Possion’s ratios m0 at the fixed internal surface thickness t=a ¼ 0:04. (d) Gyroid design with varying
internal surface thicknesses t /a at the fixed Possion’s ratio m0 ¼ 0:49. (e) Diamond design with varying Possion’s ratios m0 at the fixed internal
surface thickness t=a ¼ 0:04. (f) Diamond design with varying internal surface thicknesses t /a at fixed Possion’s ratio m0 ¼ 0:49.
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In general,80 we can define the direction-depen-
dent effective Young’s modulus Eðn̂Þ,

1=Eðn̂Þ ¼ 1=9jþ 1=3l2 � ð1=l2 � 1=l1ÞFðn̂Þ; ð10Þ

where Fðn̂Þ ¼ n2
1n

2
2 þ n2

2n
2
3 þ n2

3n
2
1, and n̂ ¼

ðn1;n2;n3Þ is the unit length directional vector.
Similarly, the effective shear modulus G depends on
a pair of orthogonal directions represented by unit
length vectors n̂ and m̂,

1=Gðn̂; m̂Þ ¼ 1=l1 þ ð1=l2 � 1=l1Þ2Dðn̂; m̂Þ; ð11Þ

whereDðn̂; m̂Þ ¼ n2
1m

2
1 þ n2

2m
2
2 þ n2

3m
2
3. Based on this,

taking n̂ ¼ ð1; 0; 0Þ and m̂ ¼ ð0; 1; 0Þ, we recover
Gðn̂; m̂Þ ¼ l1, which is the shear modulus between
two main-axis directions of the cubic unit cell. Taking

n̂ ¼ ð1; 1; 0Þ=
ffiffiffi
2

p
and m̂ ¼ ð1;�1; 0Þ=

ffiffiffi
2

p
, we obtain

Gðn̂; m̂Þ ¼ l2, which is the shear modulus between
two face-diagonal directions of the cubic unit cell.

Furthermore, we extend our analyses to the Zener
ratio,

ar ¼
l2

l1

¼ 2C44

C11 � C12
; ð12Þ

which quantifies the extent of anisotropy. As a
dimensionless criterion, ar ¼ 1 entails isotropic
elasticity. Conversely, the farther away from unity
the Zener ratio is, the more anisotropic the meta-
material. In addition, we introduce two additional
dimensionless parameters, b1 and b2, to quantify
the cubic elastic metamaterial’s ‘‘softness’’ or
‘‘incompressibility,’’

b1 ¼ j=l1 and b2 ¼ j=l2: ð13Þ

If b1 � 1 and b2 � 1, the cubic metamaterial design
can be regarded as soft, deformable, compliant, and/
or nearly incompressible.

Lastly, we also conduct comprehensive paramet-
ric studies on the full ranges of both the base
constituent material Poisson’s ratio m0 2 ½0;0:49�
and internal surface thickness t=a 2 ½0:001; 0:1�.

As shown in Fig. 5a, the effective macroscopic
Zener ratio ar for the primitive unit cell design
decreases with increasing internal surface thickness
t, though not crossing the limit of ar ¼ 1. Hence, the
primitive design remains highly anisotropic in all
ranges of internal surface thickness and base con-
stituent material Poisson’s ratio. As shown in Fig. 5d,
the effective macroscopic b1 ¼ j=l1 of the primitive
unit cell design decreases when the base constituent
material Poisson’s ratio m0 gets smaller or when the
internal surface thickness t gets larger. We also
observe a transition from the shear-compliant meta-
material behavior (large b1) at m0 ¼ 0:49 and t=a ¼
0:001 to the compression-compliant metamaterial
behavior (small b1) at m0 ¼ 0 and t=a ¼ 0:01. By
comparison, the effective macroscopic b2 ¼ j=l2,
plotted in Fig. 5g, is much less sensitive to the
internal surface thickness, t, but it is very sensitive
to Poisson’s ratio m0 of the base constituent material.

For the gyroid design, the Zener ratio ar given in
Fig. 5b shows the trend that is opposite to the ar in
Fig. 5a for the primitive design, as it increases
monotonically with both Poisson’s ratio m0 of the base
constituent material and the internal surface thick-
ness t. It also stays beyond 1, indicating a robust
anisotropic behavior for all ranges of m0 and t. As
presented in Fig. 5e, the effective macroscopic b1 ¼
j=l1 of the gyroid unit cell design monotonically
increases together with the base constituent material
Poisson’s ratio m0. The compliance transition is also
observed from the shear-compliant metamaterial
behavior (large b1) at m0 ¼ 0:49 and t=a ¼ 0:001 to
the compression-compliant metamaterial behavior
(small b1) at m0 ¼ 0 and t=a ¼ 0:01, though it is a less
sharp transition compared to primitive unit cell
design. Meanwhile, as shown in Fig. 5h, the effective
macroscopic b2 ¼ j=l2 also has a trend of compliance
transition that is similar to the case of primitive
design when Poisson’s ratio m0 of the base constituent
material increases. We also note that b2 is relatively
less sensitive than b1 to Poisson’s ratio m0 of the base
constituent material for the gyroid unit cell design.

Figure 5c shows that the effective macroscopic
Zener ratio ar of diamond unit cell design also bears
the same trend of monotonic increase with both
Poisson’s ratio m0 of the base constituent material
and the internal surface thickness, t. Here, we have
a rather special case when the thickness is small
t=a 	 0:001: The effective macroscopic Zener ratio ar
reaches ar ¼ 1, as highlighted by the red solid line.
This is the only case where isotropic elasticity is
possible in the family of all three types of LCP-
inspired material designs. Although both the con-
stituent base material property Poisson’s ratio and
the internal surface thickness contributed to the
transition of property from direction-independent to
direction-dependent for the diamond unit cell
design, the Zener ratio ar is more sensitive to the
internal surface thickness t, and larger t makes the
metamaterial more anisotropic. As shown in Fig. 5f,
the effective macroscopic b1 ¼ j=l1 for the diamond
unit cell design also monotonically increases as the
constituent base material property Poisson’s ratio m0

gets higher. Similar to the gyroid unit cell design,
the transition of compliance is internal surface
thickness independent, i.e., b1 is not sensitive to
the change of t for any constituent base material
property Poisson’s ratio. Also, we observe the com-
pliance transition from the shear-compliant meta-
material behavior (large b1) at m0 ¼ 0:49 to the
compression-compliant metamaterial behavior
(small b1) at m0 ¼ 0. In Fig. 5i, especially for a
narrow window of internal surface thickness
t=a 2 ½0:001; 0:03�, the shear-compliant metamate-
rial behavior (large b2) at t=a ¼ 0:001 quickly
changes to the compression-compliant metamaterial
behavior (small b1) at t=a ¼ 0:03. This compliance
transition renders the diamond unit cell design the
most sensitive case to internal surface thickness t,
especially when t is small.
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CONCLUSION

In conclusion, we advocate the bio-inspired
designs of cubic elastic metamaterials based on the
naturally occurring lipidic cubic phase (LCP) mor-
phologies since the surface tension-driven self-
assembly process has great potential to become a
novel high-throughput fabrication method for many
different metamaterials.

Focusing on mechanical properties, we establish a
comprehensive framework of geometric construc-
tion, finite-element simulation, and post-processing
to study the elastic behaviors of three categories of

metamaterials mimicking all possible triply periodic
minimal surface LCP configurations: primitive type
(crystallographic space group Im3m), gyroid type
(space group Ia3d), and diamond type (space group
Pn3m) unit cells. The effective macroscopic elastic
moduli extracted from our rigorous numerical sim-
ulations can provide a detailed recipe for metama-
terial applications in mechanical and civil
engineering settings. The parametric studies on
both the internal surface thickness and the base
constituent material Poisson’s ratio may become
good guidance for future manufacturing planning.

Fig. 5. Comprehensive studies on full ranges of both dimensionless parameters: The internal surface thickness, t=a 2 ½0:001;0:1�, and Poisson’s
ratio of base constituent material, m0 2 ½0;0:49�. Each row shows a specific effective macroscopic property as a dimensionless measure: (a)–(c)
The anisotropy measure Zener ratio, ar ; (d)–(f) the first incompressibility measure, b1 ¼ j=l1; (g)–(i) the second incompressibility measure,
b2 ¼ j=l2. Each column shows a specific unit cell geometry: (a), (d), and (g) for primitive; (b), (e), and (h) for gyroid; (c), (f), and (i) for diamond.
The red solid line in (c) indicates the parameter combinations to achieve elastic isotropy, i.e., Zener ratio ar ¼ 1, in the diamond design.

Zhao, Liu, and Wang2134



Furthermore, we find that, while the primitive
design is the most anisotropic, it is possible to
achieve isotropic metamaterial by the diamond
design with any type of base constituent material.
In addition, we observe that all three metamaterial
designs behave more like a compression-compliant
material with larger internal surface thickness and
lower Poisson’s ratio of the base constituent mate-
rial, and they behave more like a shear-compliant
material when the internal surface thickness is
small and when Poisson’s ratio is high in the base
constituent material.

We expect that future research efforts will con-
tinue to push the frontier of our knowledge further
on the LCP-inspired metamaterial in terms of
nonlinear elasticity, plasticity, buckling, and frac-
ture, enabling next-generation technological appli-
cations in acoustics, photonics, and
thermodynamics.
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T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, Adv.
Mater. 24, 2710 (2012).

9. T. Bückmann, M. Kadic, N. Stenger, M. Thiel, and M.
Wegener, On the Feasibility of Pentamode Mechanical
Metamaterials, In: The Sixth International Congress on
Advanced Electromagnetic Materials in Microwaves and
Optics (2012).

10. Y. Xiao, M. Borgh, A. Blinova, T. Ollikainen, J. Ruoste-
koski, and D. Hall, Topological Superfluid Defects with
Discrete Point Group Symmetries, arXiv preprint arXiv:
2203.08186 (2022).

11. J. Park, J.R. Youn, and Y.S. Song, Phys. Rev. Appl. 12,
061002 (2019).

12. W. Zhang, Q. Song, W. Zhu, Z. Shen, P. Chong, D.P. Tsai,
C. Qiu, and A.Q. Liu, Adv. Phys.: X 3, 1417055 (2018).

13. P. Verma, J. Ubaid, K.M. Varadarajan, B.L. Wardle, and S.
Kumar, ACS Appl. Mater. Interfaces. 14, 8361 (2022).

14. I. Giorgio, M. Spagnuolo, U. Andreaus, D. Scerrato, and
A.M. Bersani, Math. Mech. Solids 26, 1074 (2021).

15. V.A. Lvov, F.S. Senatov, A.A. Veveris, and V.A. Skrybyk-
ina, Materials 15, 1439 (2022).

16. C.R. Garcia, J. Correa, D. Espalin, J.H. Barton, R.C.
Rumpf, R. Wicker, and V. Gonzalez, Prog. Electromagnet.
Res. Lett. 34, 75 (2012).

17. S. Kumar, J. Ubaid, R. Abishera, A. Schiffer, and V.
Deshpande, ACS Appl. Mater. Interfaces 11, 42549 (2019).

18. K. Mohammadi, M.R. Movahhedy, I. Shishkovsky, and R.
Hedayati, Appl. Phys. Lett. 117, 061901 (2020).

19. J. Baena, L. Jelinek, and R. Marqués Phys. Rev. B 76,
245115 (2007).

20. A. Jones, M. Leary, S. Bateman, and M. Easton, J. Mater.
Process. Technol. 296, 117179 (2021).

21. S. Kazemahvazi, N. Khokar, S. Hallstrom, H. Wadley, and
V. Deshpande, Compos. Sci. Technol. 127, 95 (2016).

22. L.R. Meza, J.M. Schormans, J.J. Remmers, and V.S.
Deshpande, J. Mech. Phys. Solids 125, 276 (2019).

23. S. Das, K. Kandan, S. Kazemahvazi, H.N. Wadley, and V.S.
Deshpande, J. Mater. Res. 33, 317 (2018).

24. P.G. Adams, K.L. Swingle, W.F. Paxton, J.J. Nogan, L.R.
Stromberg, M.A. Firestone, H. Mukundan, and G.A. Mon-
taño, Sci. Rep. 5, 10331 (2015).

25. R. Parthasarathy and J.T. Groves, Proc. Natl. Acad. Sci.
101, 12798 (2004).

26. M. Rappolt, A. Hickel, F. Bringezu, and K. Lohner, Bio-
phys. J. 84, 3111 (2003).

27. M. Caffrey, Acta Crystallogr. Sect. F: Struct. Biol. Com-
mun. 71, 3 (2015).

28. E.M. Landau, J.P. Rosenbusch, Proc. Natl. Acad. Sci. 93,
14532 (1996).

29. A. Chonn, S.C. Semple, and P.R. Cullis, J. Biol. Chem. 267,
18759 (1992).

30. M.J. Moghaddam, L. De Campo, L.J. Waddington, A.
Weerawardena, N. Kirby, and C.J. Drummond, Soft Matter
7, 10994 (2011).

31. J.W. Lee, J.H. Park, and J.R. Robinson, J. Pharm. Sci. 89,
850 (2000).

32. H. Yin, X. Huang, F. Scarpa, G. Wen, Y. Chen, and C.
Zhang, Compos. Struct. 192, 516 (2018).

33. H. Yuk, B. Lu, and X. Zhao, Chem. Soc. Rev. 48, 1642
(2019).

34. Y. Li, X. Bai, T. Yang, H. Luo, and C.-W. Qiu, Nat. Com-
mun. 9, 273 (2018).

35. G. Rummel, A. Hardmeyer, C. Widmer, M.L. Chiu, P.
Nollert, K.P. Locher, I. Pedruzzi, E.M. Landau, and J.P.
Rosenbusch, J. Struct. Biol. 121, 82 (1998).

36. V. Cherezov, J. Clogston, M.Z. Papiz, and M. Caffrey, J.
Mol. Biol. 357, 1605 (2006).

37. Y. Kang, X.E. Zhou, X. Gao, Y. He, W. Liu, A. Ishchenko, A.
Barty, T.A. White, O. Yefanov, G.W. Han, and Q. Xu,
Nature 523, 561 (2015).

38. Y. La, C. Park, T.J. Shin, S.H. Joo, S. Kang, and K.T. Kim,
Nat. Chem. 6, 534 (2014).

39. R. Negrini and R. Mezzenga, Langmuir 28, 16455 (2012).
40. A.I. Tyler, H.M. Barriga, E.S. Parsons, N.L. McCarthy, O.

Ces, R.V. Law, J.M. Seddon, and N.J. Brooks, Soft Matter
11, 3279 (2015).

41. J.M. Seddon, A.M. Squires, C.E. Conn, O. Ces, A.J. Heron,
X. Mulet, G.C. Shearman, and R.H. Templer, Philos.
Trans. Royal Soc. A: Math. Phys. Eng. Sci. 364, 2635
(2006).

42. V. Vitkova and A.G. Petrov, Lipid Bilayers and Mem-
branes: Material Properties, In: Advances in planar lipid
bilayers and liposomes, Vol. 17 ( Elsevier) pp. 89–138 ,
(2013).

43. J. Briggs and M. Caffrey, Biophys. J. 66, 573 (1994).
44. M. Caffrey, Curr. Opin. Struct. Biol. 10, 486 (2000).
45. M. Caffrey and V. Cherezov, Nat. Protoc. 4, 706 (2009).
46. J. Jouhet, Front. Plant Sci. 4, 494 (2013).
47. A. Ridolfi, B. Humphreys, L. Caselli, C. Montis, T. Nylan-

der, D. Berti, M. Brucale, and F. Valle, Colloids Surf., B
210, 112231 (2022).
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