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Dispersion relations govern wave behaviors, and tailoring them is a grand challenge in wave
manipulation. We demonstrate the inverse design of phononic dispersion using nonlocal interactions
on one-dimensional spring-mass chains. For both single-band and double-band cases, we can achieve any
valid dispersion curves with analytical precision. We further employ our method to design phononic
crystals with multiple ordinary (roton or maxon) and higher-order (undulation) critical points and
investigate their wave packet dynamics.
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Phononic crystals and vibroelastic metamaterials are
architected heterogeneous solids for the manipulation of
mechanical waves. They can exhibit many unconventional
properties, such as frequency band gaps [1–7], negative
refraction [8–11], and topologically protected modes
[12–15]. They also have a wide range of applications in
cloaking [16–20], signal manipulation [21,22], focusing
[23,24], and energy trapping [25–27]. Recently, by incor-
porating nonlocal (i.e., farther than nearest neighbor)
interactions [28], Rosa and Ruzzene [29–32] demonstrated
diffusive transport, and Wu and Huang [33,34] investigated
active control, while Chen et al. [35] showed rotonlike
dispersion [36–42], where the local minimum of the
dispersion curve resembles the roton behavior [43–45]
of the helium-4 superfluid [46–50] at low temperature. All
these exotic and desirable dynamic behaviors hinge on
the dispersion relation—how frequency depends on wave
vector—that is intrinsic to each particular design. However,
most studies so far have been focused on the forward
problem from a given design to a set of band structures. It is
a long-standing goal in the research community to solve the
inverse problem from given dispersion bands to actual
metamaterial designs so that exotic behaviors and func-
tionalities can be realized on demand. Prior efforts to tailor
specific dispersions [51–55] or band gaps [56–59] typically
relied on iterative searches with high computational costs,
and they had only very limited success.
In this Letter, we demonstrate a design methodology

that uses nonlocal interactions to customize dispersion
relations. First, we present an analytical protocol to solve
the inverse problem, achieving any arbitrarily defined

single-band dispersion on monoatomic nonlocal chains.
Then, we use this design protocol to obtain dispersion
curves with ordinary and higher-order critical points. Using
time-domain simulations, we illustrate their unconventional
wave dynamics, especially at the undulation point (also
known as stationary inflection point), where both the first
and second derivatives of the dispersion curve vanish. This
results in highly concentrated vibration energy since the
wave mode is simultaneously nonpropagating and non-
spreading. Finally, we also investigate the diatomic non-
local chain and develop the design protocol to customize its
two dispersion bands.
We start with a one-dimensional “monoatomic” phonon

chain of identical masses, m, and linear springs. A
schematic of the model is depicted in Fig. 1(a). Each mass

FIG. 1. (a) An infinite chain of identical masses. Each mass is
connected to its nth-nearest neighbors with spring constant kn.
(b) The design space with fundamental constraints at the center
(q ¼ 0) and edge (q ¼ π=a) of the first Brillouin zone.
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is connected with its two nearest neighbors by local
interactions with the spring constant k1. In addition, each
mass is also connected on both sides to its two nth-nearest
neighbors with nonlocal interactions specified by the spring
constants kn, for n ¼ 2; 3; 4;…; N, where N is the longest-
range nonlocal interaction in the system. The governing
equation of motion for the jth mass is

müj ¼
XN
n¼1

knðujþn − 2uj þ uj−nÞ: ð1Þ

Based on the Bloch theorem [60], we obtain the following
dispersion relation:

ω2ðqÞ ¼ 2

m

�XN
n¼1

kn −
XN
n¼1

kn cosðnqaÞ
�
; ð2Þ

where ω is the frequency, q is the wave number, and a is the
spatial period of the lattice. For conventional chains with
local springs k1 only, Eq. (2) reduces to the classical result
of ω2ðqÞ ¼ ð4k1=mÞ sin2 ðqa=2Þ, which is always mono-
tonic and reaches its maximum at the Brillouin zone
boundary [61]. The nonlocal interactions, on the other
hand, may give rise to local minima and maxima at the
interior of the Brillouin zone, as recently demonstrated by
Chen et al. [35] and earlier by Farzbod and Leamy [62].
Since Eq. (2) takes the form of a Fourier series, we can

use it to tailor the nonlocal interactions to achieve any
desirable dispersion behavior. Mathematically, this origi-
nates from the fact that the dynamic matrix or Hamiltonian
takes the form of a circulant matrix. Before the demon-
stration of customization procedures, it is necessary to
understand all constraints in possible dispersion relations.
Here, we consider the following physical and symmetry
principles as fundamental assumptions of the designer
nonlocal phononic crystals: (i) passive with no energy
input or output, (ii) freestanding with no grounded springs,
(iii) time-reversal symmetric with no gyroscopic effect, and
(iv) stable with a finite static stiffness.
Combining the above, we arrive at the requirements

that, for any target dispersion relation ΩðqÞ defined
on the non-negative half of the first Brillouin zone
(q∈ ½0; π=a�) to be valid, it needs to be a smooth curve
with [See Fig. 1(b)]:

Ωð0Þ¼ 0; 0<Ω0ð0Þ<þ∞; and Ω0ðπ=aÞ¼ 0: ð3Þ

Given an arbitrarily specified dispersion relation, ΩðqÞ,
satisfying Eqs. (3), we can design a nonlocal phononic
crystal using the following protocol. First, we find the
Fourier coefficients as

An ¼
2a
π

Z
π=a

0

Ω2ðqÞcosðnqaÞdq; n¼ 1;2;…;N: ð4Þ

Then, the design can be obtained by

kn=m ¼ −An=2; n ¼ 1; 2;…; N: ð5Þ

Figure 2 shows results of this protocol with several
examples. Since Eq. (5) shows all kns simply scale with m,
we can set m ¼ 1 for all cases. In each case, we compare
the target dispersion with the actual one by examining the
normalized root mean square deviation (NRMSD) between
them. We purposefully choose the target curves with
various interesting features. In the implementation, we use
analytical functions as the targets for Figs. 2(a) and 2(b).
For other cases, we use piecewise spline functions to
construct target curves. The detailed procedures are given
in the Supplemental Material [63]. For each target curve,
the stiffness design variables are obtained using Eqs. (4)
and (5). The total number of stiffness types is N ¼ 10 for
Figs. 2(a)–2(d),N ¼ 20 for Figs. 2(e)–2(g), andN ¼ 25 for
Fig. 2(h), respectively.

FIG. 2. Customized dispersion curves with special features.:
(a) a flattop; (b)–(d) nonmonotonic behaviors at large, medium,
and small wave number q (i.e., at short, medium, and long
wavelength as compared to unit cell size), respectively; (e)–(h)
undulation points (squares), maxons (triangles), and rotons
(circles) occurring at the same frequency.

PHYSICAL REVIEW LETTERS 131, 176101 (2023)

176101-2



The NRMSD is less than 1% in all cases, and the details
are given in the Supplemental Materials [63]. We show that
it is possible to achieve a flat band top [Fig. 2(a)] as well as
nonmonotonic dispersion at relatively short [Fig. 2(b)],
medium [Fig. 2(c)], and long [Fig. 2(d)] wavelength
regimes. In addition, for critical points on the dispersion,
we can design systems where local maxima (maxons), local
minima (rotons), and stationary inflection points (undu-
lations) can occur at the same frequency, as illustrated in
Figs. 2(e) and 2(f).
Next, we investigate these critical points that exhibit

exotic dynamics by considering two specific instances of
nonlocal phononic crystals with the third-nearest-neighbor
(k3) interactions as the only nonlocal effect. When, k3 ¼
3k1 [Fig. 3(a), top), the dispersion curve is nonmonotonic
[blue solid curve in Fig. 3(b)], exhibiting one local
maximum (maxonlike) and one local minimum (rotonlike

[35]) at qa ¼ 2tan−1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð11=7Þ � ð6 ffiffiffi

2
p

=7Þ
q

Þ. Both of them

represent critical-point wave modes with zero group
velocity (ZGV), and they are analogous to the Van Hove
singularities [68] in electronic band structures. These ZGV
modes also have promising applications in many wave-
related engineering technologies such as noninvasive struc-
tural health monitoring [69–72] since the highly localized
wave modes can enhance both the vibration energy con-
centration and the signal-to-noise ratio in ultrasonic prob-
ing. In contrast, when k3 ¼ k1=3 [Fig. 3(a), bottom),
the dispersion curve is monotonic [black dotted curve in
Fig. 3(b)] with an undulation point in the middle at
qa ¼ π=2, where both the first and second derivatives
vanish. While rotonlike dispersions were recently demon-
strated [35–41], and undulation points of electromagnetic
waves in optical waveguides were studied as frozen
modes [73–75], we show here, for the first time, a second-
order-critical undulation point for vibroelastic waves in
phononic crystals.
To demonstrate wave behaviors at these critical points,

we also perform two types of time-domain simulations on
finite chains.
First, we apply a force excitation on the leftmost mass

of a chain with 5000 unit cells. The forcing function is a
Gaussian envelope in time:

fðtÞ ¼ exp ½−ðt − tmÞ2=τ2� cos ðωctÞ; ð6Þ

where ωc is the carrier frequency corresponding to the
critical point, tm is the peak time of the envelope, and τ ¼
100=ωc characterizes the time duration of the envelope.
Figures 3(c) and 3(d) show the results for maxonlike and
rotonlike dynamics, respectively, in the chain with
k3 ¼ 3k1. In each case, two modes of the same frequency
but different wavelengths are observed: one is the traveling
mode [hollow triangle and circle in [Fig. 3(b)] with finite
group velocity, as indicated by the black dashed line, while
the other is the ZGV mode [filled triangle and circle in

Fig. 3(b)] localized at the source. Although the maxonlike
and rotonlike ZGV modes are not traveling waves, the
results show they do diffuse and spread out in space over
time. In contrast, Fig. 3(e) shows the result at the undu-
lation-point frequency on the chain with k3 ¼ k1=3. Only
one wave mode is observed. More importantly, not only is
this mode nonpropagating, but it is also nonspreading, as
both the group velocity, ω0ðqÞ, and the diffusion rate,
ω00ðqÞ, vanish. This is a unique feature that does not exist in
ordinary ZGV modes.
Second, to further investigate the diffusion phenomena,

we look into the time evolution of a localized Gaussian
spatial wave packet,

FIG. 3. (a) Schematics of two nonlocal phononic crystals with
the first and third nearest-neighbor interactions only—top,
k3 ¼ 3k1; bottom, k3 ¼ k1=3. (b) Dispersion curves. For
k3 ¼ 3k1, a local maximum (maxon) appears at ðω; qa=πÞ ¼
ð3.61; 0.344Þ, and a local minimum (roton) appears at
ðω; qa=πÞ ¼ ð1.72; 0.656Þ. For k3 ¼ k1=3, a stationary inflection
point (undulation) appears at ðω; qa=πÞ ¼ ð1.63; 0.5Þ, where
both the first and second derivatives vanish. (c)–(e) Time-domain
results for the 3 critical points in (b): maxon, roton, and
undulation, respectively. The left column lists the time-space
plots, while the right column shows wave amplitude snapshots.
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uðx; tÞ ¼ exp ½−ðx − x0Þ2=σðtÞ� cos qcx; ð7Þ

where qc is the carrier wave number corresponding to the
critical point, x0 denotes the center of the wave packet, and
σðtÞ characterizes the width of the envelope. We prescribe
an initial Gaussian packet with σðt ¼ 0Þ ¼ σ0. In each case,
there is only one wave mode associated with the prescribed
wave number qc corresponding to the critical point, and it is
a ZGVmode. As such, the wave packet does not propagate.
However, the wave packet can still spread out or diffuse
in space, i.e., while maintaining the same mean x0, the
envelope width σðtÞ changes, and its evolution over time is
governed by [76]

σðtÞ ¼ σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðtω00=σ20Þ2

q
: ð8Þ

Numerically, we can determine the diffusion rate of the
wave packet by tracking σðtÞ in time-domain simulations
on finite chains. Figures 4(a)–4(c) show the comparison of
wave packet diffusion for the three critical points: local
maximum (maxonlike), local minimum (rotonlike), and the
undulation point (second order), respectively. In each case,
the initial (t ¼ 0) wave envelope is represented by a black
solid line. After evolving for sufficient time (t ¼ tFinal)
the resulting wave envelope is shown as a blue dotted
line. Figures 4(d)–4(f) show, for each of the cases in
Figs. 4(a)–4(c), respectively, the evolution of the packet
width, σðtÞ, at several time instances. Broadening of the
envelope is observed for both maxon and roton packets,
where ω0 ¼ 0 but ω00 ≠ 0. In contrast, the wave envelope
preserves its initial shape without diffusion in the case of
the undulation point, where ω00 ¼ ω0 ¼ 0. Lastly, we also

establish the customization protocol for the double-band
system of a one-dimensional “diatomic” nonlocal phononic
chain consisting of two different masses m1 and m2. This
model leads to the following dispersion relations:

ω2
� ¼ K0

�
1

m1

þ 1

m2

�

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

0

�
1

m1

þ 1

m2

�
2

þ 1

m1m2

ðK2
1 − 4K2

0Þ
s

; ð9Þ

where − and þ in the ∓ sign denote the first and second
bands (historically referred to as “acoustic” and “optical”
branches), respectively. Here, K0 and K1 are

K0ðqÞ ¼
XN
n¼1

kn −
XN
n¼2
n even

kn cosðnqaÞ;

K1ðqÞ ¼ 2
XN
n¼1
n odd

kn cos ðnqaÞ; ð10Þ

which are defined on the non-negative half of the first
Brillouin zone, q∈ ½0; π=ð2aÞ�. Given two arbitrarily speci-
fied smooth curves as the targets, Ω−ðqÞ and ΩþðqÞ,
satisfying all fundamental and symmetry requirements
detailed in the Supplemental Material [63], we can design
a nonlocal chain using the following protocol. First, we
calculate

α ¼ m2=m1 ¼ Ω2þ

�
π

2a

�
=Ω2

−

�
π

2a

�
;

AðqÞ ¼ ½Ω2þðqÞ þΩ2
−ðqÞ�=2;

DðqÞ ¼ ½Ω2þðqÞ −Ω2
−ðqÞ�=2: ð11Þ

Then, we can get

K0ðqÞ ¼ αAðqÞ=ðαþ 1Þ;
K2

1ðqÞ ¼ 4K2
0ðqÞ − αA2ðqÞ þ αD2ðqÞ: ð12Þ

Lastly, we obtain the stiffness values as

kn ¼
2a
π

Z π
2a

0

K1 cosðnaqÞdq; n ¼ 1; 3; 5;…

kn ¼ −
4a
π

Z π
2a

0

K0 cosðnaqÞdq; n ¼ 2; 4; 6;… ð13Þ

We note that the above protocol is capable of customizing
each individual band without affecting the other since it can
work for two independently defined targets, Ω−ðqÞ and
ΩþðqÞ. Figures 5(a)–5(d) show the results of this protocol
by setting m1 ¼ 1. The target curves are purposefully
chosen with various features: Fig. 5(a) demonstrates a
rising first band with a flat second band; Fig. 5(b) shows

FIG. 4. Diffusion at the critical points. Evolution of an initially
prescribed Gaussian packet with different carrier wave number q
(i.e., different carrier wavelength) corresponding to the critical
points in Fig. 3(b): (a) maxon mode with qa=π ¼ 0.656, (b) roton
mode with qa=π ¼ 0.344, (c) undulation mode with qa=π ¼ 0.5.
The Gaussian envelope at time tFinal (blue dotted curve) is
compared to the initial envelope at t0 (black solid curve).
(d)–(f) Theoretical and numerical values of σðtÞ vs t for each
of the cases in (a)–(c), respectively, showing the spreading of
wave envelopes.
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two bands with changing but always opposite convexity;
Fig. 5(c) has a constant-curvature first band and an arched
second band; and Fig. 5(d) has both bands monotonically
increasing. These examples show that both localized and
traveling wave modes can be designed at any arbitrarily
desirable frequency and wavelength by our protocol on
either band. In the implementation, we set the total number
of stiffness types as N ¼ 20 for Fig. 5. We also examine
NRMSD values between the target and actual dispersion
curves. The results show that, in most cases, a good match
can be achieved with just a small number of nonlocal
springs. Furthermore, we also demonstrate the protocol’s
capability of realizing linear (Dirac-cone-like) and quad-
ratic band crossings in Figs. 5(e) and 5(f), respectively.
Detailed information and additional examples are presented
in the Supplemental Material [63].
In conclusion, we can completely and analytically

customize the dispersion relations in phononic crystals
by incorporating nonlocal springs. We show dispersion
curves with multiple critical points of the first (maxon and
roton) and second order (undulation). We further study the
wave packet dynamics at each of the critical points and
illustrate how we can use them to create novel behaviors of
localized modes. This enables future research on higher-
order critical points of elastic waves in terms of topology,
scaling, and symmetry [77,78] in 2D and 3D systems.
Finally, we can also solve the inverse problem for arbitrary
two-band dispersion relations.

For practical considerations, physical samples of pho-
nonic metamaterials with a small number of nonlocal
springs can be fabricated in relatively simple designs
[38,41,79]. In fact, one-dimensional chains with any
number of nonlocal connections are, at least in principle,
feasible by the following reasoning: There are infinitely
many planes that contain the line of masses. Hence, each
nonlocal interaction can exist in a separate plane without
interfering with others, similar to the design illustrations
shown in Figs. 1(a) and 3(a), and in more detail in the
Supplemental Material [63]. During the review process, we
became aware of recent experimental efforts demonstrating
nonlocal effects [80–83]. They provide further evidence
supporting feasibility in design and fabrication. We are
confident that future research efforts will enable more
sophisticated experimental setups with many more non-
local interactions in 2D and 3D phononic crystals and
vibroelastic metamaterials.
At the continuum limit of the lattice constant a → 0,

wave mechanics in nonlocal continuum media can be
described by higher-order strain-gradient models [84–86]
as well as peridynamics [87,88]. In contrast to those
popular phenomenological and semiphenomenological
approaches, our method has the advantage of prescribing
system parameters to achieve desirable dynamic behaviors.
Homogenizing our design methodology could potentially
provide a route to design the micromodulus elasticity
kernel for target dispersion relations in continuum vibroe-
lastic metamaterials.
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SYMMETRY AND PHYSICAL REQUIREMENTS OF SINGLE-BAND SYSTEM

Here we discuss the conditions of the valid dispersion curve for a passive, free-standing, and

periodic mono-atomic spring-mass chain. First, every dispersion relation needs to obey the

periodicity in the wave number q-space:

ω(q) = ω(q + 2π/a) (S1)

where ω, q, and a denote (angular) frequency, (angular) wave number, and lattice constant,

respectively. Besides, ordinary passive systems should all satisfy the time-reversal symmetry

(See e.g. Joannopoulos et al. Photonic Crystals: Molding the Flow of Light. 2nd ed.):

ω(−q) = ω(q) (S2)

Then we can obtain

ω(π/a+∆q) = ω(−π/a−∆q)

= ω(−π/a−∆q + 2π/a)

= ω(π/a−∆q),

(S3)

Furthermore, to have a finite and uniquely defined group velocity except at q = 0, the

dispersion relation curve needs to be smooth, i.e.,

ω′(q) is uniquely defined and bounded on q ∈ (0, 2π/a) (S4)

We note that the group velocity is doubly defined at q = 0 (and hence at q = 2π/a, 4π/a, ...,

too) due to the direction flip, ω′(0+) = −ω′(0−).

Next, combining Eqn. (S3) and (S4), we arrive at

ω′(π/a) = ω′(−π/a) = 0, (S5)

which means the slope always vanishes at the Brillioun zone boundaries.

Next, free-standing systems without any elastic foundation of “grounded springs” do not

admit any lower cut-off frequency. Consequently, we get

ω(0) = 0. (S6)
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In addition, for the physical structure to be self-stable with a non-zero finite static stiffness,

we also need to guarantee

0 < ω′(0) < +∞. (S7)

To summarize, for any target dispersion relation Ω(q) defined on q ∈ [0, π/a] to be physically

possible, we need a smooth curve with

Ω(0) = 0, 0 < Ω′(0) < +∞, and Ω′(π/a) = 0. (S8)
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MONO-ATOMIC SYSTEM FORMULATION

For a mono-atomic phononic chain with non-local springs up to N -th neighbor, we have the

equation of motion for an arbitrary j-th mass in the chain as:

k1(uj−1 − 2uj + uj+1) + k2(uj−2 − 2uj + uj+2) + ...+ kN(uj−N − 2uj + uj+N) = müj, (S9)

where m and uj are the mass and displacement, and kn is spring constant for the nth-nearest

neighbor interaction.

According to the Bloch theorem, the solution is in the following form:

uj(t) = ûei(jqa−ωt), (S10)

where t denotes time, û is the wave amplitude, i is the unit imaginary number, q is the

(angular) wave number, a is the lattice constant, and ω is the (angular) frequency. Using

Eqs. (S9) and (S10), we get

−mω2 = k1(2 cos(qa)− 2) + k2(2 cos(2qa)− 2) + ...+ kN(2 cos(Nqa)− 2). (S11)

The above equation can be simplified using cos(nqa)− 1 = −2 sin2(nqa
2
), leading to

−mω2 = −4k1 sin
2(
qa

2
)− 4k2 sin

2(
2qa

2
)− ...− 4kN sin2(

Nqa

2
). (S12)

Finally, we obtain the following dispersion relation

ω(q) = 2

√
k1
m

sin2(
qa

2
) +

k2
m

sin2(
2qa

2
) + ...+

kN
m

sin2(
Nqa

2
). (S13)
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SINGLE-BAND SYSTEM DESIGN

The target curves in Figs. 2(a) and 2(b) in the main text are analytical functions:

For Fig. 2(a), we use

ω(q) =


3q cos(0.6) 0 ≤ q ≤ 0.2

sin(3q) + ω(0.2)− sin(0.6) 0.2 < q ≤ 0.526

ω(q) = ω(0.526) 0.526 < q ≤ 1

(S14)

For Fig. 2(b), we use

ω(q) =

 26.6q cos(12.103) 0 ≤ q ≤ 0.455

sin(26.6q) + ω(0.455)− sin(12.103) 0.455 < q ≤ 1
(S15)

Hence, we can directly calculate the integration analytically with the functions listed above

as the integrant.

Other target curves in the rest Fig. 2 of the main text are constructed using Bézier curves

with different control points. Given β+1 control points (P0, P1, ..., Pβ), the Bézier curve can

be defined as

B(t) =

β∑
α=1

bβα(t)Pα, 0 ≤ t ≤ 1 (S16)

where bβα(t) is the Bernstein polynomial:

bβα(t) =
β!

α!(β − α)!
tα(1− t)β−α. (S17)

Therefore, by setting up multiple control points in Table I, we can obtain the arbitrary curves

as shown in Fig. 2 in solid lines in the main text. Then, after capturing the data of the curves

and following Eq. (4) and (5), we can calculate the parameters, kn, as shown in Table II. For

all cases, m1 = 1.
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Table I: Control points for the Bézier curve

Curve 2-c Curve 2-d Curve 2-e Curve 2-f Curve 2-g Curve 2-h

q ω(q) q ω(q) q ω(q) q ω(q) q ω(q) q ω(q)

0 0 0 0 0 0 0 0 0 0 0 0

0.1 0.8 0.222 1.8134 0.0248 0.5876 0.0083 1.7096 0.0637 3.1752 0.1166 0.9728

0.2073 3.5707 0.1122 -0.2866 0.1382 0.1624 0.1688 5.5287 0.0554 1.6163 -0.1535 4.8115

0.7634 2.7024 0.778 0.6427 -0.0312 2.5611 0.314 1.7707 0.5312 -1.9994 0.4732 1.0446

0.3146 0.7902 0.222 2.1646 0.4427 1.1561 0.2564 -1.2232 -0.0038 -0.6083 -0.0006 -0.3618

1 0.9171 1 2.2411 0.249 1.2723 0.0873 0.4331 -0.1421 0.6331 -0.8525 0.936

-0.1561 -1.942 0.7599 5.3758 0.62 2.6465 2.6052 1.223

0.5662 -0.6758 0.5764 4.2548 0.2483 2.4819 -2.1446 3.0879

0.4815 0.7659 0.337 -0.7415 -0.0198 1.3293 0.7408 2.8713

-0.107 5.1051 0.3322 -5.2583 0.5669 -0.8045 0.8611 -1.5764

0.6615 -1.7904 0.921 1.0806 0.9395 -0.3439 0.1745 -1.4427

0.5166 0.4889 0.7395 7.2815 -0.0785 0.8079 1.2605 5.1554

0.5898 2.5303 0.3115 4.2854 -0.3162 2.0255 -3.165 5.7758

1 2.1162 1.0506 -2.2156 0.9427 4.7357 2.4414 0.2854

0.794 2.1815 1.1529 2.8057 1.086 0.479

0.921 2.379 0.2134 2.3694 -0.1465 1.6529

1 2.2599 0.1299 -0.2783 -0.1064 -2.8739

0.5223 -6.021 0.7235 0.1363

0.4599 -1.0452 0.3204 0.7924

2.0732 6.2166 0.393 1.9873

-1.6663 0.873 -0.1229 3.1911

3.1592 -0.9204 1.0159 3.8713

-1 2.2134 -0.3538 1.6746

1.5096 0.4108 2.6045 -1.2127

1.0764 1.035 -0.749 0.7337

0.5669 1.5892 0.1778 0.8372

0.9624 1.7006 0.5045 -1.1573

0.9854 2.0446 1.8605 0.0815

0.6108 3.6955

-0.2834 1.7401

0.6294 1.8157

1.6369 -1.2554

0.3357 3.0076

0.9399 1.3735

0.8693 1.7922

0.9728 2.2062
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Table II: Final Design Parameters for Fig.2

kn Fig.(a) Fig.(b) Fig.(c) Fig.(d) Fig.(e) Fig.(f) Fig.(g) Fig.(h)

k1 0.195042 1.243081 -0.43158 1.2905 1.496408 0.01909 0.140741 0.06257

k2 0.106402 0.58932 0.882255 -0.21601 -0.49976 -0.4717 -0.12216 -0.42643

k3 0.027936 0.009712 0.588791 -0.14662 0.04535 0.14609 0.206253 0.111957

k4 -0.00636 -0.1708 0.045147 0.106883 0.054588 0.397991 -0.14609 -0.11064

k5 -0.00662 -0.04976 -0.00539 0.050975 -0.09066 0.275431 -0.04354 0.07046

k6 0.000151 0.118901 0.081699 0.011358 0.107454 -0.01774 -0.05307 0.014392

k7 0.000973 0.069273 0.042012 0.027031 0.132855 0.536803 0.102914 0.086872

k8 -0.0008 -0.23849 -0.00894 0.01587 0.140528 0.186587 -0.01442 -0.06546

k9 -0.00059 0.190481 0.005744 0.011387 0.067593 0.073902 5.23E-05 -0.00695

k10 0.000501 -0.04681 0.018256 0.007145 0.012665 0.142534 0.036602 0.116466

k11 0 0 0 0 -0.01686 0.097753 0.060161 0.12828

k12 0 0 0 0 -0.01852 0.040082 0.067878 0.121427

k13 0 0 0 0 -0.01129 0.074053 0.021871 0.104007

k14 0 0 0 0 -0.00984 0.052984 0.021885 0.088381

k15 0 0 0 0 -0.00817 0.012655 0.014445 0.075662

k16 0 0 0 0 -0.00859 0.025735 0.016723 0.04871

k17 0 0 0 0 -0.00193 0.024027 0.009909 0.04296

k18 0 0 0 0 0.001704 0.009073 0.002757 0.035449

k19 0 0 0 0 0.007099 0.009024 0.006728 0.042557

k20 0 0 0 0 0.006733 0.014802 0.001365 0.034964

k21 0 0 0 0 0 0 0 0.034095

k22 0 0 0 0 0 0 0 0.026777

k23 0 0 0 0 0 0 0 0.02541

k24 0 0 0 0 0 0 0 0.017338

k25 0 0 0 0 0 0 0 0.017458
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TIME DOMAIN SIMULATIONS

As stated in the main text, to study the dynamical features of different critical points, we

apply a time-dependent force at the left most mass of a finite chain. The forcing function

is prescribed as a Gaussian envelop with the carrier-wave frequency corresponding to one of

the critical points. Fig. S1 shows the forcing function we use for the second-order undulation

(stationary inflection) point. The results of this input are plotted in Fig. 3(e) of the main

text. The input excitations for results shown in Figs. 3(c) and 3(d) of the main text have

the same form but different carrier frequencies.

Figure S1. Gaussian pulse applied to the left-most mass to study the time domain response of

a finite chain at the undulation-point frequency. The result of this input excitation is shown in

Fig. 3(e) of the main text. Here ω0 =
√

k1/m = 1.
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DI-ATOMIC SYSTEM FORMULATION

A 2D schematic of the model is depicted in Fig. S2.

Figure S2. A non-local diatomic chain with the unit cell enclosed in the dashed rectangle. Each

mass is connected to its nearest neighbors by linear springs with the spring constant k1 (black

lines). In addition, all masses are connected to their nth-nearest neighbors by linear springs with

spring constants kn. Red and blue lines represent second and third nearest non-local interactions,

respectively.

For the case of di-atomic chain (m1 ̸= m2), we can write the sum of spring forces for each

masses to obtain the set of equations of motions.

For m1 at the j-th position of the chain:

m1üj = k1(uj+1 − uj) + k2(uj+2 − uj) + ..+ kN(uj+N − uj)

+ k1(uj−1 − uj) + k2(uj−2 − uj) + ...+ kN(uj−N − uj).
(S18)

For m2 at the (j + 1)-th position of the chain:

m2üj+1 = k1(uj+2 − uj+1) + k2(uj+3 − uj+1) + ..+ kN(uj+1+N − uj+1)

+ k1(uj − uj+1) + k2(uj−1 − uj+1) + ...+ kN(uj+1−N − uj+1).
(S19)

We can write this set of equations in the matrix form of Mü + Ku = 0, where M and K

are the mass and stiffness matrices, and u is the displacement vector.

Applying the Bloch theorem, we arrive at a two-degree-of-freedom system with

K =

Λ0 + Λ1 Λ2

Λ3 Λ0 + Λ1

 and M =

m1 0

0 m2

 , (S20)
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where

Λ0 = 2
N∑

n=1

kn,

Λ1 = −2
N∑

n=2
n even

kn cos(nqa),

Λ2 = −
N∑

n=1
n odd

kn(e
i(n−1)qa + e−i(n+1)qa) = −e−iqa

N∑
n=1
n odd

kn(e
inqa + e−inqa)

= −2e−iqa

N∑
n=1
n odd

kn cos(nqa),

Λ3 = −
N∑

n=1
n odd

kn(e
−i(n−1)qa + ei(n+1)qa) = −eiqa

N∑
n=1
n odd

kn(e
−inqa + einqa)

= −2eiqa
N∑

n=1
n odd

kn cos(nqa).

(S21)

Solving K− ω2M = 0, we get the dispersion relations for both bands:

ω2
∓ =

1

2
(Λ1 + Λ0)(

1

m1

+
1

m2

)∓ 1

2

√
(Λ1 + Λ0)2(

1

m1

+
1

m2

)2 +
4

m1m2

(Λ2Λ3 − (Λ1 + Λ0)2),

(S22)

where − and + in the ∓ sign denote the first (“acoustic”) and second (“optical”) bands,

respectively. Next, we define

K0 =
1

2
(Λ0 + Λ1) =

N∑
n=1

kn −
N∑

n=2
n even

kn cos(nqa),

K2
1 = Λ2Λ3 =

(
2

N∑
n=1
n odd

kn cos(nqa)

)2

,

α = m2/m1,

(S23)

with which Eq. (S22) becomes

ω2
∓ = K0(

1

m1

+
1

m2

)∓
√

K2
0(

1

m1

+
1

m2

)2 +
1

m1m2

(K2
1 − 4K2

0)

=
K0

m1

(1 +
1

α
)∓

√
(
K0

m1

)2(1 +
1

α
)2 +

1

αm2
1

(K2
1 − 4K2

0)

(S24)
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Letting m1 = 1, we arrive at

ω2
∓ = K0(1 +

1

α
)∓

√
K2

0(1 +
1

α
)2 +

1

α
(K2

1 − 4K2
0) (S25)

We can further define

A(q) =
ω2
+ + ω2

−

2
= K0(

1

m1

+
1

m2

) =
α + 1

α
K0,

D(q) =
ω2
+ − ω2

−

2
=

√
[A(q)]2 +

1

m1m2

(K2
1 − 4K2

0) =

√
[A(q)]2 +

1

α
(K2

1 − 4K2
0).

(S26)
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DOUBLE-BAND SYSTEM DESIGN

We start with two arbitrarily smooth curves as the target dispersion relation, Ω−(q) and

Ω+(q), defined over the positive half of the first Brillouin zone q ∈ [0, π
2a
]. Here, the symme-

try and physical requirements are

Ω−(0) = 0, 0 < Ω′
−(0) < +∞, Ω′

−(
π

2a
) = 0,

0 < Ω+(0) < +∞, Ω′
+(0) = 0, Ω′

+(
π

2a
) = 0.

(S27)

and

0 ≤ Ω−(q) ≤ Ω+(q) ≤ +∞ for q ∈ [0, π/(2a)] (S28)

Since both dispersion curves directly scale with mass, we can always set, without loss of

generality, m1 = 1 and α = m2/m1 > 1. Then, we use the following procedure to determine

the (N + 1) design variables, k1, k2, ...kN and α = m2/m1:

We first calculate

A(q) =
Ω2

+(q) + Ω2
−(q)

2
,

D(q) =
Ω2

+(q)− Ω2
−(q)

2
.

(S29)

Next, we note

A( π
2a
)

D( π
2a
)
=

Ω2
+(

π
2a
) + Ω2

−(
π
2a
)

Ω2
+(

π
2a
)− Ω2

−(
π
2a
)
=

α + 1

α− 1
, (S30)

Then, we can obtain the mass ratio as

m2

m1

= α =
Ω2

+(
π
2a
)

Ω2
−(

π
2a
)
. (S31)

We further calculate

K0(q) =
α

α + 1
A(q), (S32)

K∗
1(q) =

√
4K2

0(q)− αA2(q) + αD2(q). (S33)
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In order for K∗
1 to be real-valued, we need

4K2
0(q) + αD2(q) ≥ αA2(q). (S34)

Plugging Eq. (S32) into Eq. (S34), we get

D2(q) ≥ (α− 1)2

(α + 1)2
A2(q). (S35)

Based on Eqs. (S27) and (S28), we have D(q) ≥ 0, A(q) ≥ 0, and α > 1. So, we arrive at

D(q)

A(q)
=

Ω2
+(q)− Ω2

−(q)

Ω2
+(q) + Ω2

−(q)
≥ (α− 1)

(α + 1)
. (S36)

Therefore, to be realizable in a system of real-valued stiffness and mass variables, the target

dispersion curves must also satisfy

Ω+(q)

Ω−(q)
≥

√
α =

Ω+(
π
2a
)

Ω−(
π
2a
)
, (S37)

i.e., the ratio between two bands, Ω+(q)/Ω−(q), must reach its minimum value at q = π/(2a).

Hence, in addition to all requirements listed in Eqs. (S27) and (S28), for arbitrarily defined

target curves, we also need to make sure the ratio between two bands, R(q) = Ω+(q)/Ω−(q),

satisfies

R(q) ≥ R(
π

2a
) for q ∈

(
0,

π

2a

)
. (S38)

We note that this additional requirement Eq. S38 is only necessary if we want all mass and

stiffness variables, m1, m2, k1, k2, ..., kN , to be real-valued, which we desire for the simple

examples presented in the main text. However, we can also go beyond this constraint if

we allow complex-valued stiffnesses, which can be potentially realized through gain, loss, or

gyroscopic effects in future studies.

As defined in Eq. (S33), K∗
1 is positive, but our design protocol aims at taking the Fourier

transform of a smooth function K1. Therefore, we construct K1 by changing the sign of K∗
1

in the intervals between the roots of K∗
1 = 0. We solve the equation K∗

1(q) = 0 to obtain its

roots as 0 < q∗1 ≤ q∗2 ≤ q∗3 ≤ ... ≤ q∗η < π
2
, where q∗η is the largest root in the open interval of

14



q ∈
(
0, π

2a

)
, and we define

K1(q) =



K∗
1(q), 0 ≤ q ≤ q∗1

−K∗
1(q), q∗1 < q ≤ q∗2

K∗
1(q), q∗2 < q ≤ q∗3

..., ...

..., q∗η < q ≤ π
2

(S39)

Lastly, we obtain all kn’s as

kn =
2a

π

∫ π
2a

0

K1 cos(naq) dq, n = 1, 3, 5, ...

kn = −4a

π

∫ π
2a

0

K0 cos(naq) dq, n = 2, 4, 6, ...

(S40)

Here, we would like to make some remarks about the important fact that this design

protocol can customize each band individually without affecting the other band in the two-

band system. This might be counter-intuitive at first glance, as changing any interaction

should simultaneously affect both dispersion bands. However, we can better understand the

independent-band-customization capability by the following logic: First, customizing each

band individually is equivalent to customizing the square of each band individually since all

frequencies are positive here. Then, it is also equivalent to independently customizing the

sum and difference, i.e., 2A(q) and 2D(q), respectively, as defined in Eq. (S29). Next, by in-

specting Eqs. (S32), (S33) and (S40) together, we note that while all kn’s affect D(q), A(q) is

completely determined by even-index kn’s only. In conclusion, since the sum of the square of

both bands solely depends on the even-index non-local interactions, we have enough “redun-

dancy” or “orthogonality” to customize each of the two bands independently from each other.
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For examples shown in Fig. 5 of main text, we use the following equations as the target

dispersions for qa ∈ [0, π/2].

For Fig. 5(a) in the main text, Ω− = sin(qa),

Ω+ = 2.
(S41)

For Fig. 5(b) in the main text,Ω− = (41/2− ((20(18 cos(3qa) + 2 cos(qa))2)/21 + 3301/84)1/2)1/2,

Ω+ = (((20(18 cos(3qa) + 2 cos(qa))2)/21 + 3301/84)1/2 + 41/2)1/2.
(S42)

For Fig. 5(c) in the main text,Ω− =
√

π2

2
− (qa− π

2
)2 − π

2
,

Ω+ = 1.3− 0.5 cos(4qa).
(S43)

For Fig. 5(d) in the main text,Ω− = − cos[1.9(q + π/2/19)] + cos(1.8π/2/19),

Ω+ = 2− cos(2q).
(S44)

The design parameters for Fig. 5 in the main text are shown in Table III.
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Table III. Parameters of the designed systems shown in Fig. 5 of the main text

Fig. 5a Fig. 5b Fig. 5c Fig. 5d

α = 4.0 α = 1.881 α = 1.5118 α = 2.2751

No. kn No. kn No. kn No. kn

1 1.6 1 10 1 0.66 1 0.72

2 0.2 2 0 2 0.062 2 2.1

3 0.013 3 -2.9 3 -0.35 3 -0.39

4 0 4 0 4 0.4 4 -0.32

5 -5.1e-5 5 5.3 5 -0.18 5 0.014

6 0 6 0 6 0.0016 6 -4.0e-3

7 4.1e-7 7 1.8 7 0.06 7 -9.1e-4

8 0 8 0 8 -0.037 8 -9.3e-4

9 -3.7e-09 9 -0.33 9 0.01 9 -6.0e-4

10 0 10 0 10 0.00025 10 -3.4e-4

11 -5.9e-10 11 -0.82 11 -0.000078 11 -2.9e-4

12 0 12 0 12 0.00013 12 -1.5e-4

13 3.4e-10 13 -0.36 13 -0.000072 13 -1.5e-4

14 0 14 0 14 0.00007 14 -7.9e-5

15 -4.1e-10 15 0.19 15 0.00019 15 -8.1e-5

16 0 16 0 16 0.000041 16 -4.5e-5

17 1.6e-10 17 0.33 17 -0.000041 17 -4.8e-5

18 0 18 0 18 0.000026 18 -2.7e-5

19 1.2e-10 19 0.12 19 0.000064 19 -3.0e-5

20 0 20 0 20 0.000017 20 -1.8e-5
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BAND DEGENERACIES

We recognize the importance of band degeneracies, such as Dirac-cone-like (i.e., locally linear)

band crossings, which usually host rich physical features and unconventional properties in

vibro-mechanical systems [1, 2, 3, 4]. To show the possibility of forming Dirac-cone-like

degeneracies with the two-band design protocol, we conduct some additional parametric

study on the di-atomic non-local chain by setting m1 = 1 and k1 = 1, while changing m2, k2,

and k3. The results are summarized in Fig. S3. We especially note that, while conventional

local phononic crystals may host Dirac-cone-like degeneracies at either the boundary or

center of the Brillouin zone, non-local phononic crystals can offer the additional features of

forming Dirac-cone-like degeneracies at other locations in the Brillouin zone.

Figure S3. Additional parametric study on forming Dirac-cone-like degeneracies.

In addition, it is also possible to create higher-order (e.g. locally quadratic) band degeneracy

in diatomic non-local phononic crystals. We show example cases for both linear and quadratic

band degeneracies in the main text:

Linear crossings with α = 1, k1 = 0.25, and k2 = k3 = 0.75 in Fig. 5(e) of the main text.

Quadratic crossing with α = 1, k1 = 0.9, k2 = 0.6, and k3 = 0.3 in Fig. 5(f) of the main text.
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NORMALIZED ROOT-MEAN-SQUARE DEVIATION (NRMSD)

We use the normalized root-mean-square deviation (NRMSD) to measure the differences

between customized designs and the target dispersions. For this purpose, we first calculate

the root-mean-square deviation (RMSD):

RMSD =

√∑T
i=1(ωi − ωtarget

i )2

T
, (S45)

where T is the total number of data points, and we use T = 3142 in this study. Next, we

normalize the RMSD by the band width,

NRMSD =
RMSD

ωmax − ωmin

. (S46)

For multi-band systems, we further calculate the average NRMSD per band. The NRMSD

for results shown in in Fig. 2 and Fig. 5 of the main text are provided in Table IV.

Table IV. Data of RMSD and NRMSD

Fig.2 Fig.5

RMSD NRMSD Lower bands Upper bands

Fig. 2a 0.002 0.000845 RMSD NRMSD RMSD NRMSD

Fig. 2b 0.004 0.0016 Fig. 5a 1.96E-10 1.96E-10 4.83E-11 —

Fig. 2c 0.003 0.0014 Fig. 5b 0.019953 0.019953 0.0033661 0.017534

Fig. 2d 0.004 0.0016 Fig. 5c 0.00064073 0.00064073 0.000027317 0.00004917

Fig. 2e 0.004 0.002 Fig. 5d 0.00033482 0.00033504 0.000014066 0.000021099

Fig. 2f 0.012 0.005

Fig. 2g 0.009 0.004

Fig. 2h 0.022 0.0098
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TENTATIVE PHYSICAL DESIGN

There might be some potential concerns about the feasibility of non-local interactions. To

address them, we present some drawings in Fig. S4, which can serve as compelling support

for validating our theory experimentally. Although we drew a system with k1 and k3 only,

we can also realize more sophisticated non-local phononic crystals with the same design

approach, albeit with much more complex geometries.

Figure S4. A tentative experimental implementation. (a) In the theoretical model of a 1D chain, all

masses are the same, and there are two types of springs: k1 and k3. (b) To ensure that all springs

k1 and k3 work independently without any interference, three types of blocks with different shapes

but equal mass are used. We also make sure all mass blocks have the C2 (180-degree-rotational)

symmetry to minimize possible effects of excessive torque. (c) The experimental assembly depicts

semi-transparent light-blue rails from above and below, and grey-colored mass blocks sandwiched

between the two rails. The upper and lower ends of the mass blocks are equipped with rotary

bearings to minimize friction. The springs k1 and k3 are depicted in red and green, respectively.

(d) A zoom-in on a specific section of the assembly.
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