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ABSTRACT

We report an easy-to-make, resonance-based mechanism to realize negative rotational inertia. The device consists of three parts: a heavy
inner core, a lightweight outer shell, and rubber connections between the core and shell. We theoretically predict and experimentally observe
the negative rotational inertia in the range of 100–230Hz. The experimental values are obtained via measurements of vibrational response.
We further clarify the relation between the bandwidth of negative inertia and the bandgap in a chain consisting of an array of negative-
inertia units. The findings reveal a unique property different from conventional systems in classical physics and offer an opportunity for
metamaterial designs.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0155865

Metamaterials of assembled building blocks can exhibit counter-
intuitive negative material parameters. In terms of static properties,
Lakes reported materials with negative Poisson’s ratio1 in 1987. In
terms of wave manipulations, the initial theoretical proposition of
optical materials with a negative refractive index was published in
1994.2 This served as an impetus for researchers to undertake theoreti-
cal and computational investigations of metamaterials possessing neg-
ative parameters, with the aim of exploring their potential for
applications.3,4 In 2003, a flat optical lens with negative refraction was
experimentally verified.5,6

In parallel with the flourishing developments of optical materials,
negative effective parameters become an emerging topic in acoustic
and vibro-elastic metamaterials. Various exotic phenomena were
investigated7–9 after negative density,10 and a negative modulus11 was
experimentally demonstrated. Negative momentum induced by a
positive-momentum excitation was also observed in experiments with
a one-dimensional spring-mass system.12 Negative effective parame-
ters were also investigated in other resonator-based systems, such as
one-dimensional chains with mass-in-mass units,13 metamaterials
spring-mass-damper subsystems,14 elastic architectures consisting of
fluid–solid composite inclusions,15 acoustic double negative metama-
terial comprising two coupled membranes,16 tunable acoustic meta-
materials with the multiple degrees of freedom resonating units,17 and
Hilbert-curve-based acoustic metamaterials in the sub-wavelength
scale.18

Rotational inertia (also known as the moment of inertia, mass
moment of inertia, angular mass, or second moment of mass), in gen-
eral, characterizes materials’ ability to resist changes in spinning
motion. Hence, they all have positive rotational inertia. In contrast,
recent examples with negative rotational inertia22,23 were theoretically
discussed. Although there have been reports that demonstrate the tor-
sional wave band gaps,24–26 which may indicate the presence of nega-
tive rotational inertia, there have yet to be any experimental
observations in physical samples. As shown in Fig. 1, experimental evi-
dence of negative rotational inertia remains absent.

In this Letter, we present theoretical analysis and experimental
measurements, demonstrating negative rotational inertia in an easy-
to-fabricate, two-degree-of-freedom device. It consists of a lightweight
outer shell and a heavier inner core. One notable advantage of this sys-
tem is that its precise characterization is easily achievable because of
the simplicity of experimental measurement of the rotational displace-
ments of each part. This allows for an effective comparison of theoreti-
cal and experimental results for a range of excitation frequencies.
Based on the results, we further analyze a periodic chain with units of
negative rotational inertia and reveal the correct relation between the
bandgap of the chain and the bandwidth of the unit’s negative inertia.

We start with the device shown in Figs. 2(a) and 2(b), which
leads to a discrete model for two rotational inertias, I1 for the shell and
I2 for the core, with a rotational stiffness kh between them. The equa-
tions of free vibration are
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I1€h1 þ khðh1 � h2Þ ¼ 0; (1a)

I2€h2 þ khðh2 � h1Þ ¼ 0; (1b)

where h1 and h2 are the rotational displacements of the outer shell and
the inner core, respectively. This system has two natural frequencies:

The first one is zero, which corresponds to the rigid body rotation of
the two parts together. The second one is

xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kh

I1 þ I2
I1I2

r
; (2)

which corresponds to the mode of relative rotation between the two
parts. In addition, we define the following two “blocked resonance
frequencies”27 by considering one degree of freedom frozen and the
other free,

x1 ¼

ffiffiffiffiffi
kh

I1

s
and x2 ¼

ffiffiffiffiffi
kh

I2

s
: (3)

Then, we consider the forced rotational harmonic vibration scenario
illustrated in Fig. 2(c). This adds an excitation torque of
sðtÞ ¼ F0 cos ðxtÞ � r11 to the right-hand side of Eq. (1a). Here, F0
denotes the forcing amplitude, x the driving frequency, and r11 the
outer radius of the shell. Hence, we can obtain the solution,

h1 ¼
ðkh � x2I2Þs

x4I1I2 � khðI1 þ I2Þx2
; (4a)

h2 ¼
khh1

kh � x2I2
: (4b)

Next, we treat the entire device as a whole and assume that the inner
core is hidden from external observers. Hence, the only observable of
this unit’s rotation is h1. This is similar to the homogenization concept
widely used in materials science and metamaterial designs. We now
obtain the effective equation of motion,

Ieff€h1 ¼ s; (5)

where Ieff denotes the effective rotational inertia and h1 is the apparent
rotational response of the device to an outside observer. From Eqs.
(4b) and (5), we can derive

FIG. 1. A concise overview of the history of negative parameters proposed in
recent decades, along with some of the representative literature on the topic:
Negative modulus and density,19 Negative Permittivity and Permeability,20 Negative
Poisson’s ratio,1 and Negative differential conductance.21 The experimental obser-
vation of negative effective rotational inertia is currently empty.

FIG. 2. Schematics of the fabricated device with negative rotational inertia. (a) The overall structure. (b) Top view showing geometric details. The black-colored core with height
h1 ¼ 0:060m has three fins characterized by the angle a2 ¼ 75� and two radii r21 ¼ 0:038m and r22 ¼ 0:015m. The blue-colored shell with height h2 ¼ 0:057m has three
internal teeth characterized by the angle a1 ¼ 15� and three radii r11 ¼ 0:050m; r12 ¼ 0:043m, and r13 ¼ 0:018m. The six pieces of yellow-colored are rubber with height
hk ¼ 0:057m, which is used to bond and secure all three blue fins and all three black fins of both the shell and the core together. (c) Experimental setup for forced vibration
tests. The base, top cover, and pillars act as support fixtures.
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Ieff ¼
s

�x2h1
¼ I1 þ

khI2
kh � x2I2

¼ I1 þ
I2

1� ðx=x2Þ2
: (6)

This shows that we can achieve Ieff < 0 as long as we have both

x > x2 and I1 <
I2

ðx=x2Þ2 � 1
: (7)

Finally, we obtain the following range of driving frequencies associated
with the device’s negative rotational inertia behavior:

x2 < x <

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 þ I1
I1

r
x2 ¼ xn: (8)

Hence, the normalized (dimensionless) frequency bandwidth of the
negative rotational inertia phenomenon is

Dx ¼
xn � x2

x2
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
I2
I1
þ 1

r
� 1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1
l
þ 1

r
� 1; (9)

where l ¼ I1=I2 is the rotational inertia ratio between the shell and
core.

As shown in Fig. 3(a), while both xn and x2 increase with rising
rotational inertia ratio l ¼ I1=I2, the dimensional bandwidth xn � x2

for the negative rotational inertia effect decreases with increasing l. At
the limit of l! 0, it reaches the maximum value of x1.

In contrast, the dimensionless bandwidth, Dx, shown in Fig.
3(b), has no upper bound since Dx ! þ1 when l! 0. In principle,
we can obtain any arbitrary large relative bandwidth for the negative
rotational inertia phenomenon by minimizing l ¼ I1=I2. The
purple vertical dotted lines in Figs. 3(a) and 3(b) illustrate the ratio

l ¼ 0:127 used in the experimental setup, which is described in the
next section.

We can also calculate the rotational transmission ratio between
the inner core and outer shell,

TðxÞ ¼
���� h2h1
���� ¼

���� kh

kh � x2I2

����: (10)

At the quasi-static limit of x! 0; Tð0þÞ ¼ 1. In addition, TðxÞ > 1
for x 2 0;

ffiffiffi
2
p

x2

� �
. This is the frequency range in which the rotation

is amplified. In contrast, we find TðxÞ < 1 for x 2
ffiffiffi
2
p

x2;þ1
� �

.
This is the frequency range in which the rotation is reduced.

We experimentally demonstrate negative rotational inertia under
forced vibration conditions. The design is inspired by a gear transmis-
sion system. The inner core acts as a three-teeth-spur gear with a larger
rotational inertia I2 than that of the shell I1. The size of each compo-
nent and the experimental setup are shown in Fig. 2. The outer shell is
made by 3D printing with polylactic acid (PLA) that has density
q1 ¼ 650 kg=m3. The inner core is made of steel with density
q2 ¼ 7800 kg=m3. Measurements give their rotational inertia as I1
¼ 2� 10�4 kgm2 and I2 ¼ 9:2� 10�4 kgm2. We use six pieces of
natural rubber to connect the core and shell. Measurements find the
total rotational stiffness as kh ¼ 340:7Nm=rad. Importantly, we also
make sure that the rotational inertia of rubber pieces are negligible as
compared to core and shell. Detailed discussion on measurement and
calculation procedures is given in the supplementary material.
Cyanoacrylate glues are used to bind the inner core, rubber pieces, and
shell together, as shown in Figs. 2(a) and 2(b). The inner core and
outer shell are free to rotate around the low-friction central axle made
of stainless steel.

FIG. 3. Theoretical prediction on the bandwidth of negative rotational inertia for
varying inertia ratio l ¼ I1=I2. (a) The green-shaded region represents the dimen-
sional bandwidth. (b) The black solid line represents the dimensionless bandwidth.
The vertical purple-dotted lines illustrate the dimensional and dimensionless band-
widths corresponding to l ¼ 0:217, which is measured from the fabricated experi-
mental sample.

FIG. 4. Comparison of the measured data (blue squares) and theoretical predic-
tions (red lines). The error bars indicate the maximum and minimum values from
five repeated measurements. (a) The transmission coefficient T is strongly
frequency-dependent. (b) The normalized effective rotational inertia Ieff=I1 is also
strongly frequency-dependent. In the range from 100 to 230 Hz (green-shaded
region), we achieve a negative rotational inertia Ieff < 0.
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As shown in Fig. 2(c), to excite a small-angle rotational oscilla-
tion, a shaker (SA-JZ002) is connected with a hinge along the tangen-
tial direction of the outer cylindrical shell. Two miniaturized
lightweight accelerometers (CA-YD-103 with diameter ¼ 14mm;
height ¼ 19mm, and weight ¼ 13 g) are glued to the inner core and
outer shell. Tests are performed in the range of 60–270Hz with a
10Hz increment. Five repeated measurements are conducted for each
frequency on the same experimental setup.

Equations (6) and (8) predict that the value of Ieff becomes nega-
tive when the excitation frequency x is between 97 and 227Hz. For a
clear comparison, experimental measurements of the effective

rotational inertia are plotted as blue squares with error bars in Fig. 4,
where the theoretical values are plotted as red lines. On the one hand,
the experimental data in Fig. 4(a) show the resonant behavior near
x2 ¼ 97Hz. On the other hand, Fig. 4(b) shows that the value of Ieff
diverges at the resonant frequency. Furthermore, the experimental
measurements confirm that the device has negative rotational inertia
for the excitation frequencies from x¼ 100Hz to x¼ 230Hz.

Next, we investigate the effect of units of negative rotational iner-
tia in a periodic chain and explore the potential for such a metamate-
rial in manipulating the torsional wave propagation. This adds
another system parameter of rotational stiffness, Kh, which connects

FIG. 5. (a) A periodic chain of units with negative rotational inertia. All the units are arranged along the same axis, and each unit is connected to its neighbor by a torsional
spring Kh. (b) A unit cell of the chain. The dispersion relations of torsional waves on the chain are plotted by varying the stiffness ratio Kh=kh ¼ 10�2; 10�1; 100; 101; and102.
(c) and (d) The real and imaginary parts of the dispersion, respectively. The vertical axes represent the dimensionless angular wave number q, which is related to the wave-
length k by q ¼ 2p=k. The green-shaded regions indicate the frequency bandwidth in which the units exhibit negative rotational inertia, with the upper bound (xU ¼ xn)
marked by the vertical dashed lines and the lower bound (xL ¼ x2) marked by the vertical dotted line. (e) The vibration transmission of a finite chain, which has 50 units.
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the outer shells between all pairs of units, as illustrated in Figs. 5(a)
and 5(b). There are two degrees of freedom in each unit, so we can get
a two-band dispersion for the chain. By varying the stiffness ratio of
Kh=kh, we plot the real part of the dispersion curves for torsional
waves propagating in the chain, cyan-colored first band and magenta-
colored second band, in Fig. 5(c). In these same plots, we also highlight
the frequency bandwidth of the negative rotational inertia phenome-
non as the green-shaded region. Equation (8) dictates that this band-
width is between the upper- and lower-frequency bounds of

xU ¼ xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kh

I1 þ I2
I1I2

r
; (11a)

xL ¼ x2 ¼

ffiffiffiffiffi
kh

I2

s
; (11b)

which are plotted as the dashed and dotted lines, respectively, in Figs.
3(a), 4(b), and 5(c)–5(e). This bandwidth does not change throughout
all cases since it is strictly a unit-cell property, and it does not depend
on Kh.

In contrast, by following similar procedures adopted in previous
theoretical analyses,28,29 we can obtain the frequency limits of the
bandgap of the periodic chain as

xGapU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kh

I1 þ I2
I1I2

r
¼ xn ¼ xU; (12a)

xGapL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 4x2

2X
2
1

qr
; (12b)

where

v ¼ kh

2I1
þ kh

2I2
þ 2Kh

I1
¼ x2

1

2
þ x2

2

2
þ 2X2

1 (13)

and X1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Kh=I1

p
. While the upper edge of the bandgap coincides

with the upper bound of negative rotational inertia (i.e., xGapU ¼ xU),
the lower edge of the bandgap is different from the lower bound of
negative rotational inertia (i.e., xGapL 6¼ xL). Hence, contrary to the
pervasive misconception,12,30–34 the bandgap frequency range is not
necessarily equivalent to negative-inertia bandwidth. As shown in the
first two columns of Fig. 5(c), the bandgap can be much wider than
the negative-inertia bandwidth when Kh < kh. In fact, asymptotic
analyses of Eqs. (12b) and (13) show that we can have xGapL ! xL at
the limit of Kh � kh.

To complete the numerical discussion, we also present the imaginary
part of the dispersion relations in Fig. 5(d). In spite of the varying stiffness
ratio of Kh=kh and the varying gap sizes, the imaginary dispersion curves
in Fig. 5(d) always display the valleys of strongest attenuation that are pre-
cisely at the lower bound for negative rotational inertia: xL ¼ x2.
Furthermore, we study the vibration transmission of a finite chain with 50
unit cells. We use an excitation torque of sðtÞ ¼ F0 cos ðxtÞ � r11 on the
first unit’s shell and then obtain the transmission in dB as

TransmissionðxÞ ¼ 20 log10

���� hI150hI11

����; (14)

where hI11 and hI150 are response rotations of the shell parts of the first
and last units, respectively. As shown in Fig. 5(e), the finite-chain
transmission agrees with the imaginary part of the dispersion in Fig.

5(d). Further details regarding finite chains consisting of different
numbers of units can be found in the supplementary material.

In summary, we fabricate a cylindrical device of the size 0.1 m in
diameter and 0.06 m in height and experimentally measure its frequency-
dependent rotational inertia. The design consists of a heavy inner core, a
lightweight outer shell, and rubber connections between the core and
shell. In the frequency range from 100 to 230Hz, our experimental obser-
vations show that this device exhibits negative rotational inertia. Through
theoretical analysis, we also find that the dimensionless operating band-
width can be arbitrarily wide for the phenomenon of negative rotational
inertia. In addition, we numerically analyze the torsional wave propaga-
tion on a periodic chain consisting of such units of negative rotational
inertia. By presenting both real and imaginary parts of the dispersion rela-
tions, we further clarify the relationship between the torsional wave
bandgap in the chain and the bandwidth of the negative rotational inertia
phenomenon. In addition, we study the vibration transmission of finite
systems. This study extends the classical concept of rotational inertia and
demonstrates that it can be positive or negative in different frequency
ranges. The findings may pave the way to explore physical phenomena of
rotational vibrations and torsional waves in solids.

See the supplementary material for photos and data of experi-
mental testing and parametric measurements of the device’s each
component.
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• Experimental Testing: 

 
FIG. S1 Schematic diagram of the experimental principle and structure of the experimental model.  

 

We fabricate the device of the inner core (𝐼2) and the outer shell (𝐼1), and then conduct 

measurements under an external excitation 𝑓(𝑡) = 𝐹0cos(𝜔𝑡) . The angular 

accelerations �̈�2 = 𝐴2cos(𝜔𝑡) of the inner core and �̈�1 = 𝐴1cos(𝜔𝑡) of the outer shell 

are obtained by accelerometer 1 and accelerometer 2, respectively. Based on Eqs. (6) and 

(10), the Figure 4 can be obtained with experimental data. The measurements are tested 

in the range of 60 Hz - 270 Hz with a 10 Hz increment, data for each measurement as 

shown in Table. S1. 
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Table. S1 Measured data for Shell (A1) and Core (A2) 

 

 

  

Frequency 

(Hz) 
|A2 |(g) |A1| (g) |A2 | (g) |A1| (g) |A2 | (g) |A1| (g) 

60 3.1892 4.5456 3.2724 4.3276 4.1789 5.2656 

70 1.8511 1.7244 2.8858 3.1018 3.0683 2.4167 

80 2.8923 2.3756 6.24536 4.50187 6.14432 4.09183 

90 4.76845 1.98694 14.76137 4.41052 2.34567 1.1762 

100 8.04543 2.36596 8.09004 2.86549 4.64167 1.28022 

110 12.63399 9.328 2.79719 2.48988 6.34248 6.87789 

120 3.68391 2.34832 2.02406 3.38831 3.20551 4.6785 

130 6.54021 7.60588 6.21987 7.78654 5.39636 5.73362 

140 2.37787 3.58523 3.19669 4.72444 2.60029 3.35279 

150 4.32813 8.77499 4.31335 5.49092 4.16466 7.33913 

160 3.09596 6.91868 1.91587 5.23503 2.91358 8.15 

170 3.38103 8.53593 1.9004 6.12129 1.92649 4.54758 

180 1.74465 5.5361 2.84761 9.50055 2.59868 8.95496 

190 2.11598 7.66448 3.32058 12.15665 2.60443 9.36319 

200 1.90168 7.37483 2.78655 11.04925 1.97772 6.92854 

210 1.37441 5.96156 2.60571 10.37513 2.16545 9.29019 

220 1.8376 10.28222 1.31849 7.22952 1.03637 5.49195 

230 0.59323 5.1125 0.93116 8.00831 8.18594 15.06809 

240 0.9971 10.30642 1.39496 14.12741 3.44694 9.14561 

250 1.21588 10.03212 0.58029 11.37817 5.14931 13.92143 

260 1.30164 13.09309 1.42821 15.16731 3.6952 13.77325 
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• Parametric Measurements 

 

The rubber is placed according to the experimental conditions, one side is horizontal 

and the other side is rotated under pressure, the force Fk perpendicular to the horizontal 

is measured at different angles at a distance L from the centre of rotation of the system, 

and an expression is obtained for the relationship between the moment Mk applied to the 

rubber and the angle θ0 of compression. 

)-sin(= 0θθLFM kkk     (S1)                   

where θk is the magnitude of the angle when the force on the system is zero. 

 

         

FIG S2. Measuring the rotational stiffness of rubber. 

 

Table S2. Torque applied to each rubber at different angles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Angle 

(°) 

Rubber 1 

(Nm) 

Rubber 2 

(Nm) 

Rubber 3 

(Nm) 

Rubber 4 

(Nm) 

Rubber 5 

(Nm) 

Rubber 6 

(Nm) 

1 1 0.96 1.02 1.05 1.02 0.96 0.93 0.92 0.96 0.94 0.96 1.01 

2 1.78 1.83 2.03 2.13 2.12 2.04 1.89 1.96 1.9 1.95 1.9 1.95 

3 2.99 2.92 3.17 3.07 3.02 2.78 2.73 2.92 3.12 3.13 3 3.06 
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Table S3. Parameters of Each Component of the Device. 

 

• Estimates of rotational inertia of rubber bars. 

 

  
FIG S3. The mass of one piece of rubber.

 

2 2

2 1

1
( )

2
ring ringI m R R= −   (S2a) 

2 2

max 2 max 1min

1
( )

2
r rI nm R R= −   (S2b)

 

The measured mass of one piece of rubber 𝑚𝑟 = 0.3 × 10−3 kg. The maximum 

rotational inertia of the fan ring rubber 𝐼𝑟_𝑚𝑎𝑥 = 1.04 × 10−6 kgm2 of the system can be 

found. Therefore, the rotational inertia of the rubber is very small and is ignored in this 

letter. The R1 and R2 values are based on the Table S3.
 

 

 

 

 

 

  

No. E hr (m) R1 (m) R2 (m) kθ (Nm/rad) 

1. 

4.25Mpa 

0.05 0.015 0.0385 55.66 

2. 0.053 0.015 0.0375 59.61 

3. 0.05 0.015 0.0365 56.45 

4. 0.05 0.015 0.037 54.09 

5. 0.055 0.015 0.036 58.04 

6. 0.049 0.015 0.037 56.85 
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• Measurement of rotational moment of inertia by the constant torque method.  

 

FIG S4. Constant moment method for measuring rotational moment of inertia. 

 

     A weight s = 0.5 is dropped from rest and the time t of fall is recorded. Friction, the 

mass of the rope is not accounted for; the rotational inertia of the runner is measured in 

advance to be 3 × 10−6𝑘𝑔 ∙ 𝑚2 . A system with a total rotational inertia I receives a 

tangential force F from a weight of mass m. The radius of the runner at the winding is r, 

and the angular acceleration of the weight can be found 𝛽 = 𝛼 𝑟⁄ .Find the instantaneous 

moment applied to the system 𝑀 = 𝐼𝛽. The relationship between the fall time t of the 

weight and the rotational inertia I is obtained. 

22

12

tgr

sI
m = .                         (S2) 

where g is the acceleration of gravity.  

 

 

 

Table S4. Experimental results of the measurement I1 and I2. 

m(kg) t (s) I (kg.m2) Result (kg.m2) 

0.01 3.20 9.21e-4 
I2≈9.2e-4 

0.02 2.26 9.19e-4 

0.01 1.5 2.03e-4 
I1≈2e-4 

0.02 1.06 2.02e-4 
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• The Vibration Transmission of Finite Chains 

 

 

FIG S4. The vibration transmission of periodic chain of units with negative rotational 

inertia. In addition to results shown in Fig. 5 of the main text, here we present the results 

of chains with (a) 3, (b) 5, (c) 10, (d) 20, and (e) 40 units. Each chain is investigated with 

varying the stiffness ratios. The dash lines are 𝜔𝑛; the dot lines are 𝜔2, and the solid 

black lines are the transmission between the last of first unit of the chain.  
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