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Fractal patterns in the parameter space of a bistable Duffing oscillator
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We study the dissipative bistable Duffing oscillator with equal energy wells and observe fractal patterns in
the parameter space of driving frequency, forcing amplitude, and damping ratio. Our numerical investigation
reveals the Hausdorff fractal dimension of the boundaries that separate the oscillator’s intrawell and interwell
behaviors. Furthermore, we categorize the interwell behaviors as three steady-state types: switching, reverting,
and vacillating. While fractal patterns in the phase space are well known and heavily studied, our results point to
another research direction about fractal patterns in the parameter space. Another implication of this study is that
the vibration of a continuous bistable system modeled using a single-mode approximation also manifests fractal
patterns in the parameter space. In addition, our findings can guide the design of next-generation bistable and
multistable mechanical metamaterials.
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Introduction. The dissipative bistable Duffing oscillator is
a well-known dynamical system with applications in many
fields, such as shape morphing [1], energy harvesting [2],
soft robotics [3], microelectromechanical system (MEMS)
devices [4], energy absorption [5], and drug delivery [6]. In
addition, with recent advances in the multistable metamaterial
[7,8], and advanced functional systems [9], bistable system
dynamics can be introduced as a mechanism for folding
and reprogramming [10]. Equation (1) represents the general
dimensionless form of the bistable Duffing equation with
symmetric double potential wells around two stable equilib-
ria at u−1 = −1 and u+1 = +1, which are separated by a
“hilltop” unstable equilibrium at u0 = 0 (see Supplemental
Material [11] for the detailed derivation):

ü + γ u̇ − u + μu3 = G cos(�τ ). (1)

The frequency response curve [12] is a standard tool to
describe the bistable system dynamics by solving Eq. (1) in
the frequency domain, but it does not provide a complete
picture. Instead, analyses on the potential well escape provide
advantages to investigate the overall dynamics [13–17]. For
example, energy criteria [18–23], forcing phase [24], and ve-
locity conditions [25] offer valuable information. However,
due to the uncertainty of the initial conditions [26,27] and
fractal basin boundaries in the phase space [25,28–37], most
recent studies are unable to conclusively determine in which
potential well (right or left) the system will reside after the
escape. In addition, system parameters such as frequency
(�), forcing amplitude (G), and damping ratio (γ ) also in-
fluence the system’s final state. In a previous publication,
Moon analyzed the parameter plane of forcing amplitude and
frequency [38]. They identified a fractal boundary between
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a bistable Duffing oscillator’s intrawell and interwell behav-
iors. Although a fractal dimension of 1.26 was calculated
from limited experimental data, the statistical complexity of
the fractal boundary requires further data analysis. Further-
more, the study on the single-well Duffing system also shows
fractal-like patterns of “Arnold’s tongues” [39] in the parame-
ter plane, which motivates us to investigate further the fractal
nature of the region boundaries of the double-well bistable
Duffing oscillator. Soskin et al. investigated the criterion of
reaching the coordinate of a saddle in Hamiltonian systems
and found fractal-like patterns in the parameter space. How-
ever, the fractal dimension of the parameter space was not
calculated in their studies [40,41]. In addition, Mathias et al.
observed the presence of fractal structures in the parameter
space of a nontwist area-preserving map [42].

In this Letter, we propose numerical criteria addressing the
oscillator’s categories of behavior between potential wells.
To avoid the well-known sensitivity due to the initial condi-
tion, we fix the initial conditions at (u, u̇) = (−1, 0) in all
simulations. Furthermore, we seek to conduct rigorous numer-
ical simulations to categorize different system behaviors and
calculate accurate fractal dimensions in the parameter space.
We first reexamine the frequency response curve and the pa-
rameter space of the bistable Duffing oscillator. Importantly,
our numerical investigation reveals that the single-degree-of-
freedom (SDOF) model based on a single-vibration-mode
assumption exhibits the fractal pattern very well. Next, we cat-
egorize the different steady-state response behaviors inside the
parameter space. Finally, we calculate the fractal dimensions
of the boundaries that separate the interwell and intrawell
behaviors in the parameter space. The fractal dimension re-
veals the statistical complexity of the parameter space of the
bistable Duffing system. Our results indicate that interwell
behavior, traditionally defined as chaotic behavior, can be
understood and has potential applications in shape morphing.

Frequency response curve and its limitations. We start with
time-domain simulations using the fourth-order Runge-Kutta

2470-0045/2023/108(2)/L022201(7) L022201-1 ©2023 American Physical Society

https://orcid.org/0000-0002-2246-854X
https://orcid.org/0000-0002-4323-3387
https://orcid.org/0000-0003-3320-8898
https://orcid.org/0000-0003-0270-2068
https://orcid.org/0000-0002-7829-8519
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.L022201&domain=pdf&date_stamp=2023-08-21
https://doi.org/10.1103/PhysRevE.108.L022201


HASAN, GREENWOOD, PARKER, KONG, AND WANG PHYSICAL REVIEW E 108, L022201 (2023)

FIG. 1. (a) Five frequency response curves across values of forc-
ing amplitude G and for γ = 0.07. (b) Forcing amplitude-frequency
(G vs �) parameter space where magenta and yellow zones represent
interwell and intrawell behavior regions, respectively. (c), (d) Time-
domain and the phase-space responses of interwell (magenta)
behavior with parameters (G,�) = (0.175, 1.13291) and intrawell
(yellow) behavior with parameters (G, �) = (0.150, 1.30506),
respectively, for γ = 0.07.

scheme over a broad range of (G,�) for a constant damp-
ing ratio of γ = 0.07 to discern the interwell and intrawell
responses. In Fig. 1(a), we sweep the forcing frequency �

in the range of 0.80 � � � 2.0 at a step size of 0.0047. We
also sweep the forcing amplitude G in the range of 0.100 �
G � 0.200 at a step size of 0.025. In each simulation, we
solve Eq. (1) to obtain the time response of 500 forcing cy-
cles. Then we capture the average peak-to-peak steady-state
amplitude of the last 50 periods of the time response. In all
cases, we start with the initial conditions of (u, u̇) = (−1, 0).
First, we examine the frequency response curve in Fig. 1(a).
It shows multiple solutions, both interwell and intrawell,
coexisting near � = 1.0. This is the root cause of the hys-
teresis jump phenomena [18,19]. Consequently, the standard
frequency response curve cannot provide enough information
about potential-well escape criteria.

We then consider the parameter space of forcing amplitude
and driving frequency (G and �) and use a 256×256 grid to
plot the results in Fig. 1(b). We obtain the time history for
500 periods in each simulation. If the response amplitude,
which begins at u−1 = −1 based on the initial condition,
exceeds the hilltop equilibrium at u0 = 0, then the response
exhibits the interwell behavior. Alternatively, if the response
amplitude does not exceed the unstable equilibrium at u0 in
all 500 periods, we recognize this response as the intrawell
behavior. The two different parameter regions are illustrated
in Fig. 1(b). As examples, Figs. 1(c) and 1(d) show the
time and phase-space responses of the interwell (magenta

curves) and intrawell (yellow curves) behaviors. We observe
that the boundary between the interwell and intrawell zones
in Fig. 1(b) takes an intricate shape. Near the boundary, the
oscillator’s behavior is highly sensitive to a subtle change in
the amplitude and frequency of the excitation. This shows that
the single-mode SDOF model can capture fractal patterns in
the parameter space of a bistable system, contrary to the argu-
ment that higher-order vibration modes with more degrees of
freedom are required [38].

Categories of steady-state behaviors in the parameter
space. Figure 1 shows two behaviors: intrawell oscillation
near one stable equilibrium, and interwell between two sta-
ble equilibria [43]. However, a thorough investigation of the
dynamics of a double-well potential system with harmonic
excitation uncovers opportunities for unique applications, as
it exhibits four possible types of behavior: (i) Switching: in-
terwell behavior where the oscillation begins in one potential
well, and after the transient stage, reaches its steady state
in the other potential well; (ii) reverting: interwell behavior
where the oscillation begins in one potential well, reaches the
other potential well during the transient stage, and eventually
returns to its original potential well in the steady state; (iii)
vacillating: interwell behavior where the oscillation keeps
moving between the two wells, and it never settles into either
one; and (iv) intrawell: steady-state oscillation in one potential
well only.

To quantitatively distinguish these categories of behav-
ior using numerical results from time-domain simulations,
we first check whether the system displacement amplitude,
which begins at u−1 based on the initial condition, exceeds
the hilltop equilibrium at u0. Then, we recognize the last
50 cycles as the steady-state output of the total of 500 cy-
cles in the simulations. Based on this numerical assumption,
we define ξmax = max[u(t )|t ∈ {last 50 cycles}] and ξmin =
min[u(t )|t ∈ {last 50 cycles}]. As illustrated in Fig. 2(a) (note
that a much smaller number of cycles are shown here for
illustration purposes), if ξmax > 0 and ξmin > 0, we categorize
this behavior as switching. In Fig. 2(b), the phase-space plot
of the same simulation illustrates the growth of the oscilla-
tor’s limit cycle oscillations (LCOs) [44] from u−1, and it
eventually reaches a steady-state trajectory near u+1. This
picture resembles the stable LCOs in many studies [24,44,45].
Thus, up to the numerical precision, we can conclude that
the oscillator stabilizes in the second stable state [45] and
categorize this as the switching behavior. In Fig. 2(c), the
oscillator switches from the u−1 potential well to the u+1

one during the transient stage. For the steady state, we ob-
serve ξmax < 0 and ξmin < 0, meaning it reverts back to its
initial well at u−1 in the end. We categorize this behavior
as reverting. Correspondingly, we see a stable limit cycle
around the stable equilibrium at u−1 in Fig. 2(d). Next, in
Figs. 2(e) and 2(g), the oscillator’s interwell behavior exhibits
persistent shifting between u−1 to u+1. The observation of
ξmax > 0 and ξmin < 0 in the steady state implies that it contin-
ues to oscillate between both potential wells without settling
into either one, so we can categorize these behaviors as
vacillating. We also analyze the phase-space behavior to dis-
tinguish between periodic and aperiodic vacillating behaviors.
Figure 2(f) illustrates periodic vacillating where the phase-
space trajectory follows a high-energy orbit motion outside of
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FIG. 2. Categories of time domain and phase space of behav-
iors with damping ratio γ = 0.07: (a), (b) Switching behavior with
parameters (G,�) = (0.100, 1.17595). (c), (d) Reverting behav-
ior with parameters (G, �) = (0.125, 1.209412). (e), (f) Periodic
vacillating behavior with parameters (G,�) = (0.400, 1.10294).
(g), (h) Aperiodic vacillating behavior with parameters (G,�) =
(0.175, 1.13291). (i), (j) Intrawell behavior with parameters
(G,�) = (0.150, 1.30506).

the separatrix [44], while Fig. 2(h) shows low-energy orbits
around either one or two potential wells inside the separa-
trix. Finally, Fig. 2(i) displays the intrawell behavior, which
remains in the vicinity of the stable equilibrium at u−1 without
reaching the unstable equilibrium at u0. Figure 2(j) shows the
stable limit cycle around u−1 corresponding to the intrawell
confinement.

Fractal patterns in the parameter space. Using the four
categories of behaviors described in the last section, we update
our understanding of the parameter space of Fig. 1(b). For
each set of (G,�), we run time-domain simulations in the
parameter ranges of 0.80 � � � 1.8 and 0.03 � G � 0.30
with different damping ratios. Figures 3(a)–3(f) show the re-
sults for γ = 0.001, 0.07, 0.15, 0.25, and 0.30, respectively
(see Supplemental Material [11] for more results with other
damping ratios). We categorize the numerical steady state of
each simulation either as switching, reverting, vacillating, or

intrawell behavior. We represent them as red, blue, green,
and yellow data points in Fig. 3, respectively. The minimally
required forcing amplitude Gmin for interwell behavior rises
as γ increases. For example, Fig. 3(a) indicates the minimum
amplitude required for interwell behavior is G = 0.04. In
contrast, in Figs. 3(b) and 3(c), it is about G = 0.09. In all
cases, we see the well-known V-shaped “Arnold’s tongue,”
whose bottom tip represents Gmin for vacillating behavior. As
damping increases, the tip of Arnold’s tongue moved up and
left towards � = 1. Figure 3(a), in particular, shows that the
vacillating behavior dominates among all interwell behaviors
in the low damping limit. This means that low dissipation
increases the likelihood of vacillating behavior.

In general, the results in Fig. 3 suggest that, compared to
the quasistatic actuation [47], utilizing harmonic excitation
can significantly reduce the forcing amplitude necessary to
switch between stable states. For the given system under qua-
sistatic loading, a dimensionless force of 0.38 is required for
switching between stable states (see Supplemental Material
[11]). In contrast, as shown in Fig. 3(a), interwell behavior
can be achieved with a much lower dimensionless actua-
tion forcing amplitude of Gmin = 0.04, which is one order
of magnitude lower than the required quasistatic actuation
force. These results highlight the importance of optimizing
the (G,�, γ ) parameters to achieve interwell behavior in the
system. Moreover, incorporating feedback control strategies
[10] can further enhance the controlled switching between
stable states, resulting in a more efficient actuation mechanism
than the quasistatic actuation.

To gain a better understanding of the intricacy of parameter
space, we focus on the region enclosed by the black frame
in Fig. 3(b). A higher-resolution picture of the same region
is plotted as Fig. 3(c). It shows feather-shaped self-similar
patterns and strongly suggests the existence of fractals in the
parameter space of the bistable Duffing oscillator. Motivated
by the fractal pattern in the forcing amplitude-frequency (G
vs �) parameter plane, we also investigate the damping ratio-
forcing frequency (γ vs �) parameter plane. Figure 4 shows
the results in the parameter range 0.80 � � � 1.8 and 0.00 �
γ � 0.35 for G = 0.1, 0.125, 0.15, 0.2, 0.225, and 0.25, re-
spectively (see Supplemental Material [11] for more results
with other forcing amplitudes). The patterns look similar to
those shown in Fig. 3, but they have flipped upside down with
the top tip indicating the maximally allowed damping for in-
terwell behavior. As Fig. 3, with increasing forcing amplitude
G, the Arnold’s tongue tip moves up and left towards � = 1.
Feather-shaped fractal patterns with self-similarity also ap-
pear. The results show that higher forcing amplitude and lower
dissipation lead to a higher likelihood of vacillating behavior
in the steady state.

Fractal dimension of boundaries in the parameter space.
After examining the motion categories presented in Fig. 2,
we observe the existence of self-similar fractal patterns in
Figs. 3 and 4. Now, we aim to calculate the Hausdorff fractal
dimension [48] FD of the parameter-space boundaries between
the interwell and intrawell behaviors. This aims at deepening
our understanding of the statistical complexity of the fractal
boundaries. To accomplish this, we simplify the parameter
space by considering only two categories instead of four:
interwell and intrawell behavior, as shown in Figs. 5(a) and
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FIG. 3. Forcing amplitude-frequency (G vs �) parameter space (sampled over a uniform grid of 256×256) with (a) damping ratio
γ = 0.001 and (b) γ = 0.07. (c) Zoom-in of the black-framed portion of (b), which shows the fractal nature. (d) γ = 0.15. (e) γ = 0.25.
(f) γ = 0.30.

5(c). This is motivated by the fact that all types of interwell
motions can lead to switching between stable states at least
once.

As illustrated in Figs. 5(b) and 5(d), we implement the
box-counting algorithm [49] to calculate the Hausdorff fractal

dimension of extracted boundary curves in each parameter-
space plot. We use square-shaped boxes of variable size ε to
cover the boundary curves [e.g., black lines in Figs. 5(b) and
5(d)], and count the total number of boxes, N (ε), needed to
cover all boundaries. As ε → 0, N (ε) → ∞, and we obtain

FIG. 4. Damping ratio-forcing frequency (γ vs �) parameter space (sampled over a uniform grid of 256×256) with (a) forcing amplitude
G = 0.100, (b) G = 0.125, (c) G = 0.150, (d) G = 0.200, (e) G = 0.225, and (f) G = 0.250.
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FIG. 5. Fractal dimension of the boundaries in forcing amplitude-frequency (G vs �) and damping ratio-forcing frequency (γ vs �)
parameter space: (a) An example with the damping ratio of γ = 0.07. (b) Fractal boundary between interwell and intrawell regions. (c) An
example with the forcing amplitude of G = 0.190. (d) Fractal boundary between interwell and intrawell regions. (e) and (f) show the linear
regression of the box-counting algorithm data for (b) and (d) using the least-squares method to calculate the Hausdorff fractal dimension.
(g) illustrates the Hausdorff fractal dimension of the boundaries in (G vs �) parameter space as the damping ratio increases from 0.001 �
γ � 0.30 with a step size of 0.01. (h) illustrates the Hausdorff fractal dimension of the boundaries in (γ vs �) parameter space as the forcing
amplitude increases from 0.10 � G � 0.25 with a step size of 0.005. The red (�) markers show the box-counting algorithm implementation’s
FD results. The blue (×), green (∗), and black (×) markers show the maximum, average, and minimum FD results from the image processing
software FRACLAC/IMAGEJ [46].

FD as

FD =
∣∣∣∣limε→0

[
log(N )/log

(
1

ε

)]∣∣∣∣. (2)

Finally, we use the least-squares method to perform linear
regression on the log(N ) vs log( 1

ε
) plot to determine FD.

For example, the linear regressions shown in Figs. 5(e) and
5(f) generate FD = 1.29 and FD = 1.29 for the parameter-
space boundaries shown in Figs. 5(b) and 5(d), respectively.
To verify our implementation, we also use the software
FRACLAC/IMAGEJ [46] developed by the National Institutes
of Health (NIH). It determines the fractal dimensions of
Figs. 5(b) and 5(d) as 1.2813 and 1.27, respectively, which
has a close agreement with our numerical predictions of FD

from Figs. 5(e) and 5(f).
It is worth noting that the level of magnification is a

crucial factor when using the box-counting algorithm to cal-
culate the fractal dimension, as highlighted in previous studies
[50,51]. The nature of fractal patterns, in fact, entails that
they can always give finer details at any smaller scale. We
observe that, as we increase the level of magnification (i.e.,
higher resolution), the fractal dimension resulting from box
counting approaches a plateau (see Supplemental Material
[11]). This plateau indicates that the fractal dimension has
reached the “mesh convergence,” where “mesh” here refers
to the numerical resolution in the parameter space. In other
words, this convergence supports that the fractal dimension

in the parameter space remains consistent as we further
zoom in.

Following the above procedure, we calculate the fractal
dimensions of boundaries in 31 forcing amplitude-frequency
plots and 31 damping ratio-forcing frequency plots of the
parameter space (see Supplemental Material [11]) for 0.001 �
γ � 0.30 and 0.10 � G � 0.25, respectively. Using FRA-
CLAC/IMAGEJ [46], we also calculate the average, maximum,
and minimum fractal dimensions in all cases. We summa-
rize all results in Fig. 5(g) for different damping ratios
and Fig. 5(h) for different forcing amplitudes, respectively.
The Hausdorff fractal dimension plotted here characterizes
the boundaries between interwell and intrawell motions.
We observe a downward trend with an increasing damp-
ing ratio or forcing amplitude. This indicates that higher
damping and higher forcing amplitude can reduce the com-
plexity of the dynamical behavior of the bistable Duffing
oscillator.

Conclusion. We show that four system behaviors (switch-
ing, reverting, vacillating, and intrawell) exist as different
regions in the parameter space of a dissipative bistable Duffing
oscillator. Our numerical results reveal the fractal nature of the
boundaries between the interwell and intrawell regions. The
box-counting algorithm leads to characterizing the Hausdorff
fractal dimension of these boundaries. This study exclusively
focuses on the fractal patterns in the parameter space, which
are often neglected compared to those in the phase space.
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