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S1 Nondimensionalization of Bi-stable Duffing Oscilla-

tor Equation

The harmonically excited bi-stable system undergoes exotic dynamics. A variety of behaviors
including switching, reversion, vacillation, and intra-well may happen under single-frequency
harmonic excitation.

Figure S1: An illustration of a bi-stable duffing system with two equal energy wells described
in the main text.

As an example of physical realization, Fig. S1(a) shows a single degree of freedom system
consisting of a point mass, m under harmonic excitation F cos(ωt) with viscous damping, c,
and two linear stiffness, k. We denote the vertical displacement as z(t) and the force in each
spring as Fs, which has horizontal and vertical components Fh and F0, respectively, as shown
in Fig. S2. While the system has a total width of 2b, each linear spring has the zero-force

Figure S2: A schematic of bistable spring restoring force

equilibrium length L0 > b. We consider the state where the springs are at an angle θ with
the horizontal direction, and the vertical component of the spring force, F0, is denoted by,
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F0 = 2k(L0 − L) sin(θ) (S1)

Where sin(θ) = h−z(t)
L

. L0 =
√
h2 + b2 is the unstretched length of the spring, and L =√

(h− z(t))2 + b2 is the stretched length of the spring. Hence, we have,

F0 = 2k(h− z)

( √
h2 + b2√

(h− z)2 + b2
− 1

)
(S2)

Now, let û(t) = h− z(t), and then the Eq. (S2) becomes,

F0 = 2kû

(√
h2 + b2√
û2 + b2

− 1

)
(S3)

F0 = 2kû

(
L0√

û2 + b2
− 1

)
(S4)

Assuming û(t)
b

<< 1, expanding Eq. (S4) using Taylor series expansion yields (higher order
terms omitted),

F0 = 2k

(
L0

b
− 1

)
û− kL0

b3
û3 (S5)

Thus, we have the stiffness term of the system in the polynomial form −k1û + k3û
3, where

the coefficients are k1 = 2k
(
L0

b
− 1
)
and k3 =

kL0

b3
.

Now, the bistable spring is excited under harmonic excitation F cos(ωt), dynamic gov-
erning equation of the bi-stable spring-mass system is represented by the below equation,

m
d2û

dt2
+ c

dû

dt
− k1û+ k3û

3 = F cos(ωt). (S6)

Below, we show the complete nondimensionalization of Eq. (S6): To start, the non-

dimensional length and time can be defined as u = û/l and τ = tωn, where ωn =
√

k1
m

is

the natural frequency at the linear limit. Additional dimensionless parameters are γ = c
mωn

,

µ = k3d2

mω2
n
, Ω = ω

ωn
, and G = F

lω2
n
. Here, the characteristics length is chosen in such a way that

l =
√
k1/k3 ⇒ µ = 1. After non-dimensionalization, Eq. (S6) becomes

ü+ γu̇− u+ u3 = G cos(Ωτ) with ü =
d2u

dτ 2
and u̇ =

du

dτ
(S7)

For µ = 1, Eq. (S7) results in the symmetric energy potential shown in Fig. S1(b). If we
choose the characteristic length in such a way that lc =

√
k1/k3 ⇒ µ = 1, the potential

landscape has double symmetric wells around two stable equilibria at u−1 = −1 and u+1 =
+1, which are separated by an unstable hilltop equilibrium at u0 = 0.
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S2 Static Loading Required to Switch between Stable

States

Under the quasi-static loading condition, Eq. (S7) becomes

−u+ u3 = Fstatic. (S8)

Next, by solving dFstatic/du = 0, we obtain the critical displacement u∗ = ±
√
3/3, which

results in the dimensionless critical force amplitude for switching, F ∗
static = | − u∗ + (u∗)3|.

This shows the dimensionless force required is F ∗
static = 2

√
3/9 ≈ 0.38 to move between the

two stable states, as depicted in Fig. S3.

Figure S3: The force-displacement response of the bistable system in the static limit.
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S3 Box-Counting Algorithm for Calculating Fractal Di-

mension

Box-counting algorithm for calculating the fractal dimension of the boundary between inter-
well and intra-well motion is shown below. We execute the following step to calculate the

Figure S4: An algorithm for calculating the fractal dimension, FD

FD of Figs.5(b) and 5(d) in the main text. First, we pre-treat Figs.5(a) and 5(c) in the
main text by utilizing the image processing toolbox of MATLAB and eroding the gray-scale
image to get the boundary between inter-well and intra-well motion. Then, we extract the
binary image to get the pixel data corresponding to the Boolean matrix (contains 1 and
0) and split the Boolean matrix into sub-matrices of ϵ ∗ ϵ in the sequence of (1 < ϵ <
smaller side length of the image). Afterward, we count N boxes of non-zero element matrix
according to ϵ size. Using the least-square method, we linearly fit the data log(N) vs. log(1

ϵ
)

plot. Then, the absolute value of the slope of Figs.5(e) and (f) in the main text yields a
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fractal dimension FD. When performing the box-counting algorithm to calculate the fractal
dimension (e.g., Fig. 5(a) and (d) in the main text), we run additional simulations and
magnify the parameter space to different levels of pixel resolutions. Then, we calculate the
fractal dimension at each level until it converges. Fig. S5 shows an example of the process
for γ = 0.001. We observe that the fractal dimension initially rises with increasing resolution
but eventually reaches a plateau where it is stabilized. This plateau indicates our numerical
algorithm has led to convergence, and further magnification does not result in significant
changes to the fractal dimension calculation.

Figure S5: Fractal dimension of the parameter space for γ = 0.001 as a function of magnifica-
tion level. The fractal dimension increases with increasing magnification level but eventually
reaches a plateau where it stabilizes, indicating that the fractal pattern is self-similar at that
level of magnification.
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S4 Forcing Amplitude-Frequency (G vs.Ω) Parameter

Space

31 forcing amplitude-frequency parameter space for γ ranges from 0.001 ∼ 0.30 with the
increment of 0.01.

(a) γ = 0.001

(b) γ = 0.01

Figure S6: Forcing amplitude-frequency parameter space
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(c) γ = 0.02

(d) γ = 0.03

Figure S6: Forcing amplitude-frequency parameter space
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(e) γ = 0.04

(f) γ = 0.05

Figure S6: Forcing amplitude-frequency parameter space
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(g) γ = 0.06

(h) γ = 0.07

Figure S6: Forcing amplitude-frequency parameter space
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(i) γ = 0.08

(j) γ = 0.09

Figure S6: Forcing amplitude-frequency parameter space
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(k) γ = 0.10

(l) γ = 0.11

Figure S6: Forcing amplitude-frequency parameter space
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(m) γ = 0.12

(n) γ = 0.13

Figure S6: Forcing amplitude-frequency parameter space
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(o) γ = 0.14

(p) γ = 0.15

Figure S6: Forcing amplitude-frequency parameter space
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(q) γ = 0.16

(r) γ = 0.17

Figure S6: Forcing amplitude-frequency parameter space
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(s) γ = 0.18

(t) γ = 0.19

Figure S6: Forcing amplitude-frequency parameter space
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(u) γ = 0.20

(v) γ = 0.21

Figure S6: Forcing amplitude-frequency parameter space
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(w) γ = 0.22

(x) γ = 0.23

Figure S6: Forcing amplitude-frequency parameter space
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(y) γ = 0.24

(z) γ = 0.25

Figure S6: Forcing amplitude-frequency parameter space
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(aa) γ = 0.26

(ab) γ = 0.27

Figure S6: Forcing amplitude-frequency parameter space
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(ac) γ = 0.28

(ad) γ = 0.29

(ae) γ = 0.30

Figure S6: Forcing amplitude-frequency parameter space
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S5 Damping Ratio-Forcing Frequency (γ vs.Ω) Param-

eter Space

31 damping ratio-forcing frequency (γ vs. Ω) parameter space forG ranges from 0.100 ∼ 0.250
with the increment of 0.05.

(a) G = 0.100

(b) G = 0.105

Figure S7: Damping ratio-forcing frequency parameter space
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(c) G = 0.110

(d) G = 0.115

Figure S7: Damping ratio-forcing frequency parameter space
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(e) G = 0.120

(f) G = 0.125

Figure S7: Damping ratio-forcing frequency parameter space
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(g) G = 0.130

(h) G = 0.135

Figure S7: Damping ratio-forcing frequency parameter space
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(i) G = 0.140

(j) G = 0.145

Figure S7: Damping ratio-forcing frequency parameter space
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(k) G = 0.150

(l) G = 0.155

Figure S7: Damping ratio-forcing frequency parameter space
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(m) G = 0.160

(n) G = 0.165

Figure S7: Damping ratio-forcing frequency parameter space
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(o) G = 0.170

(p) G = 0.175

Figure S7: Damping ratio-forcing frequency parameter space
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(q) G = 0.180

(r) G = 0.185

Figure S7: Damping ratio-forcing frequency parameter space
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(s) G = 0.190

(t) G = 0.195

Figure S7: Damping ratio-forcing frequency parameter space
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(u) G = 0.200

(v) G = 0.205

Figure S7: Damping ratio-forcing frequency parameter space
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(w) G = 0.210

(x) G = 0.215

Figure S7: Damping ratio-forcing frequency parameter space
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(y) G = 0.220

(z) G = 0.225

Figure S7: Damping ratio-forcing frequency parameter space
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(aa) G = 0.230

(ab) G = 0.235

Figure S7: Damping ratio-forcing frequency parameter space
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(ac) G = 0.240

(ad) G = 0.245

(ae) G = 0.250

Figure S7: Damping ratio-forcing frequency parameter space
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S6 Two-Colored Forcing Amplitude-Frequency (G vs.Ω)

Parameter Space

31 two-colored forcing amplitude-frequency parameter space for γ ranges from 0.001 ∼ 0.30
with the increment of 0.01.

(a) γ = 0.001

(b) γ = 0.01

Figure S8: Two-colored forcing amplitude-frequency parameter space
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(c) γ = 0.02

(d) γ = 0.03

Figure S8: Two-colored forcing amplitude-frequency parameter space
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(e) γ = 0.04

(f) γ = 0.05

Figure S8: Two-colored forcing amplitude-frequency parameter space
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(g) γ = 0.06

(h) γ = 0.07

Figure S8: Two-colored forcing amplitude-frequency parameter space
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(i) γ = 0.08

(j) γ = 0.09

Figure S8: Two-colored forcing amplitude-frequency parameter space
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(k) γ = 0.10

(l) γ = 0.11

Figure S8: Two-colored forcing amplitude-frequency parameter space
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(m) γ = 0.12

(n) γ = 0.13

Figure S8: Two-colored forcing amplitude-frequency parameter space
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(o) γ = 0.14

(p) γ = 0.15

Figure S8: Two-colored forcing amplitude-frequency parameter space
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(q) γ = 0.16

(r) γ = 0.17

Figure S8: Two-colored forcing amplitude-frequency parameter space
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(s) γ = 0.18

(t) γ = 0.19

Figure S8: Two-colored forcing amplitude-frequency parameter space
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(u) γ = 0.20

(v) γ = 0.21

Figure S8: Two-colored forcing amplitude-frequency parameter space
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(w) γ = 0.22

(x) γ = 0.23

Figure S8: Two-colored forcing amplitude-frequency parameter space
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(y) γ = 0.24

(z) γ = 0.25

Figure S8: Two-colored forcing amplitude-frequency parameter space
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(aa) γ = 0.26

(ab) γ = 0.27

Figure S8: Two-colored forcing amplitude-frequency parameter space
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(ac) γ = 0.28

(ad) γ = 0.29

(ae) γ = 0.30

Figure S8: Two-colored forcing amplitude-frequency parameter space
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S7 Two-Colored Damping Ratio-Forcing Frequency (γ vs.Ω)

Parameter Space

31 two-colored damping ratio-forcing frequency parameter space for G ranges from 0.100 ∼
0.250 with the increment of 0.05.

(a) G = 0.100

(b) G = 0.105

Figure S9: Two-colored damping ratio-forcing frequency parameter space
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(c) G = 0.110

(d) G = 0.115

Figure S9: Two-colored damping ratio-forcing frequency parameter space
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(e) G = 0.120

(f) G = 0.125

Figure S9: Two-colored damping ratio-forcing frequency parameter space
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(g) G = 0.130

(h) G = 0.135

Figure S9: Two-colored damping ratio-forcing frequency parameter space
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(i) G = 0.140

(j) G = 0.145

Figure S9: Two-colored damping ratio-forcing frequency parameter space
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(k) G = 0.150

(l) G = 0.155

Figure S9: Two-colored damping ratio-forcing frequency parameter space
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(m) G = 0.160

(n) G = 0.165

Figure S9: Two-colored damping ratio-forcing frequency parameter space
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(o) G = 0.170

(p) G = 0.175

Figure S9: Two-colored damping ratio-forcing frequency parameter space
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(q) G = 0.180

(r) G = 0.185

Figure S9: Two-colored damping ratio-forcing frequency parameter space
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(s) G = 0.190

(t) G = 0.195

Figure S9: Two-colored damping ratio-forcing frequency parameter space
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(u) G = 0.200

(v) G = 0.205

Figure S9: Two-colored damping ratio-forcing frequency parameter space
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(w) G = 0.210

(x) G = 0.215

Figure S9: Two-colored damping ratio-forcing frequency parameter space
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(y) G = 0.220

(z) G = 0.225

Figure S9: Two-colored damping ratio-forcing frequency parameter space
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(aa) G = 0.230

(ab) G = 0.235

Figure S9: Two-colored damping ratio-forcing frequency parameter space
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(ac) G = 0.240

(ad) G = 0.245

(ae) G = 0.250

Figure S9: Two-colored damping ratio-forcing frequency parameter space
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S8 Fractal Boundary between Inter-well and Intra-well

Motion for Forcing Amplitude-Frequency (G vs.Ω)

Parameter Space

31 two-colored forcing amplitude-frequency parameter space fractal boundary between inter-
well and intra-well motion for γ ranges from 0.001 ∼ 0.30 with the increment of 0.01,

(a) γ = 0.001 (b) γ = 0.01

Figure S10: Fractal boundary between inter-well and intra-well motion (two-colored forcing
amplitude-frequency parameter space)
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(c) γ = 0.02

(d) γ = 0.03

Figure S10: Fractal boundary between inter-well and intra-well motion (two-colored forcing
amplitude-frequency parameter space)
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(e) γ = 0.04

(f) γ = 0.05

Figure S10: Fractal boundary between inter-well and intra-well motion (two-colored forcing
amplitude-frequency parameter space)
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(g) γ = 0.06

(h) γ = 0.07

Figure S10: Fractal boundary between inter-well and intra-well motion (two-colored forcing
amplitude-frequency parameter space)
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(i) γ = 0.08

(j) γ = 0.09

Figure S10: Fractal boundary between inter-well and intra-well motion (two-colored forcing
amplitude-frequency parameter space)
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(k) γ = 0.10

(l) γ = 0.11

Figure S10: Fractal boundary between inter-well and intra-well motion (two-colored forcing
amplitude-frequency parameter space)
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(m) γ = 0.12

(n) γ = 0.13

Figure S10: Fractal boundary between inter-well and intra-well motion (two-colored forcing
amplitude-frequency parameter space)
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(o) γ = 0.14

(p) γ = 0.15

Figure S10: Fractal boundary between inter-well and intra-well motion (two-colored forcing
amplitude-frequency parameter space)
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(q) γ = 0.16

(r) γ = 0.17

Figure S10: Fractal boundary between inter-well and intra-well motion (two-colored forcing
amplitude-frequency parameter space)
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(s) γ = 0.18

(t) γ = 0.19

Figure S10: Fractal boundary between inter-well and intra-well motion (two-colored forcing
amplitude-frequency parameter space)
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(u) γ = 0.20

(v) γ = 0.21

Figure S10: Fractal boundary between inter-well and intra-well motion (two-colored forcing
amplitude-frequency parameter space)
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(w) γ = 0.22

(x) γ = 0.23

Figure S10: Fractal boundary between inter-well and intra-well motion (two-colored forcing
amplitude-frequency parameter space)
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(y) γ = 0.24

(z) γ = 0.25

Figure S10: Fractal boundary between inter-well and intra-well motion (two-colored forcing
amplitude-frequency parameter space)
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(aa) γ = 0.26

(ab) γ = 0.27

Figure S10: Fractal boundary between inter-well and intra-well motion (two-colored forcing
amplitude-frequency parameter space)
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(ac) γ = 0.28 (ad) γ = 0.29

(ae) γ = 0.30

Figure S10: Fractal boundary between inter-well and intra-well motion (two-colored forcing
amplitude-frequency parameter space)
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S9 Two-Colored Damping Ratio-Forcing Frequency (γ vs.Ω)

Parameter Space Boundary between Inter-well and

Intra-well Motion

31 two-colored damping ratio-forcing frequency parameter space fractal boundary between
inter-well and intra-well motion for G ranges from 0.100 ∼ 0.250 with the increment of 0.05.

(a) G = 0.100

(b) G = 0.105

Figure S11: Fractal boundary between inter-well and intra-well motion (two-colored damping
ratio-forcing frequency parameter space)
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(c) G = 0.110

(d) G = 0.115

Figure S11: Fractal boundary between inter-well and intra-well motion (two-colored damping
ratio-forcing frequency parameter space)
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(e) G = 0.120

(f) G = 0.125

Figure S11: Fractal boundary between inter-well and intra-well motion (two-colored damping
ratio-forcing frequency parameter space)
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(g) G = 0.130

(h) G = 0.135

Figure S11: Fractal boundary between inter-well and intra-well motion (two-colored damping
ratio-forcing frequency parameter space)
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(i) G = 0.140

(j) G = 0.145

Figure S11: Fractal boundary between inter-well and intra-well motion (two-colored damping
ratio-forcing frequency parameter space)
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(k) G = 0.150

(l) G = 0.155

Figure S11: Fractal boundary between inter-well and intra-well motion (two-colored damping
ratio-forcing frequency parameter space)
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(m) G = 0.160

(n) G = 0.165

Figure S11: Fractal boundary between inter-well and intra-well motion (two-colored damping
ratio-forcing frequency parameter space)
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(o) G = 0.170

(p) G = 0.175

Figure S11: Fractal boundary between inter-well and intra-well motion (two-colored damping
ratio-forcing frequency parameter space)
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(q) G = 0.180

(r) G = 0.185

Figure S11: Fractal boundary between inter-well and intra-well motion (two-colored damping
ratio-forcing frequency parameter space)
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(s) G = 0.190

(t) G = 0.195

Figure S11: Fractal boundary between inter-well and intra-well motion (two-colored damping
ratio-forcing frequency parameter space)
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(u) G = 0.200

(v) G = 0.205

Figure S11: Fractal boundary between inter-well and intra-well motion (two-colored damping
ratio-forcing frequency parameter space)
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(w) G = 0.210

(x) G = 0.215

Figure S11: Fractal boundary between inter-well and intra-well motion (two-colored damping
ratio-forcing frequency parameter space)
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(y) G = 0.220

(z) G = 0.225

Figure S11: Fractal boundary between inter-well and intra-well motion (two-colored damping
ratio-forcing frequency parameter space)
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(aa) G = 0.230

(ab) G = 0.235

Figure S11: Fractal boundary between inter-well and intra-well motion (two-colored damping
ratio-forcing frequency parameter space)
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(ac) G = 0.240 (ad) G = 0.245

(ae) G = 0.250

Figure S11: Fractal boundary between inter-well and intra-well motion (two-colored damping
ratio-forcing frequency parameter space)
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