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A B S T R A C T   

Variational quantum algorithms exploit the features of superposition and entanglement to optimize a cost 
function efficiently by manipulating the quantum states. They are suitable for noisy intermediate-scale quantum 
(NISQ) computers that recently became accessible to the worldwide research community. Here, we implement 
and demonstrate the numerical processes on the 5-qubit and 7-qubit quantum processors on the IBM Qiskit 
Runtime platform. We combine the commercial finite-element-method (FEM) software ABAQUS with the 
implementation of Variational Quantum Eigensolver (VQE) to establish an integrated pipeline. Three examples are 
used to investigate the performance: a hexagonal truss, a Timoshenko beam, and a plane-strain continuum. We 
conduct parametric studies on the convergence of fundamental natural frequency estimation using this hybrid 
quantum-classical approach. Our findings can be extended to problems with many more degrees of freedom 
when quantum computers with hundreds of qubits become available in the near future.   

1. Introduction 

Variational quantum algorithms (VQAs) [1] can solve problems in 
optimization [2], machine learning [3,4], physics [5], chemistry [6], 
material sciences [7], and cryptography [8]. Due to the unique features 
of entanglement and superposition, quantum computers can leverage 
VQAs to tackle problems efficiently and accurately while bypassing the 
limitation of memory allocation and computational complexity. VQAs 
achieve the goal of finding the solution by integrating classical opti-
mizers with a quantum circuit. The quantum part here is designed to 
prepare quantum states and their measurements thereafter while the 
classical part is used to tune the quantum circuit parameters. The po-
tential advantages of VQAs lie in the scaling law with respect to degrees 
of freedom (DOFs) in the mathematical model of problems: A particular 
quantum state represented by N qubits can encode the information of 2N 

DOFs. This translates to an exponential scaling that surpasses any 
possible classical computing process, thereby facilitating a significant 
speed-up as compared to traditional solvers. 

Specialized algorithms within VQAs suitable for near-term noisy 
intermediate-scale quantum (NISQ) computers were recently demon-
strated in analyzing electronic structures [9,10], molecular spectra [11], 
fluid flows [12,13], heat transfer [14,15], as well as general algebraic 

[16,17] and differential systems [18–22]. 
While these recent studies exemplify the vast potential of quantum 

computing and its implementation, the research community has yet to 
showcase an integrated pipeline that unifies VQAs with the finite- 
element method (FEM), which is a robust and widely-used technique 
across many disciplines. Motivated by this gap, we aim to investigate 
strategies for deploying quantum solvers to solve eigenvalue problems 
that are ubiquitous in mechanical systems. Focusing specifically on vi-
bration analyses, the precise identification of the fundamental natural 
frequency in structures is critical in engineering practice. The impor-
tance is underscored by the resonant phenomenon where a small oscil-
latory perturbation can provoke a disproportionally large response. 

In this Letter, we combine the FEM capability of the commercial 
software package ABAQUS together with the Variational Quantum 
Eigensolver (VQE) [23–25] on Qiskit quantum computing platform to 
implement an integrative FEM-VQE pipeline aiming at finding the 
fundamental natural frequency of different structures. We demonstrate 
and analyze three example cases: (I) hexagonal truss, (II) Timoshenko 
beam, and (III) plane-strain continuum. We first test our hybrid 
quantum-classical algorithm on a simulator backend and then on 
quantum processing units (QPUs) with 3 ~ 7 qubits. Results from clas-
sical solvers are used as benchmarks to quantify the errors. We perform a 
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series of parametric studies on the key factors in the implementation. In 
addition, we also discuss current limitations and potential future 
directions. 

2. Numerical implementation 

The field of quantum computing is burgeoning, giving rise to a suite 
of software toolsets that each offer a different method of implementation 
and computational capabilities [29]. These toolsets are pivotal in 
translating the intricate theories of quantum computing into a 
user-friendly interface. As the research community in this domain 
flourishes, an array of such toolsets are (in chronological order of release 
dates): Forest SDK/PyQuil [30,31], Microsoft Quantum Development 
Kit [32], ProjectQ [33], PennyLane [34], Amazon Braket [35], IBM 
Qiskit [36], Cirq/TensorFlow Quantum [37,38], and Bosonic Qiskit 
[39]. Here, we employ the IBM Qiskit platform, primarily due to its 
maturity and extensive community support. 

Fig. 1 depicts the steps to realize the integrative quantum-classical 
pipeline. Our approach involves the following components:  

• ABAQUS/CAE and ABAQUS/STANDARD  
• Qiskit quantum hardware and simulators  
• NumPy and Matplotlib 

There are three major parts of this hybrid framework:  

(A) ABAQUS Pre-processing is shown as the orange-colored steps in 
Fig. 1. This scripting approach indicates an automatic process 
with user-defined problem settings. By converting user inputs 
directly into a desired output format, ABAQUS Pre-processing 
enables a high level of customization and could potentially 
handle large-scale problems, depending on the robust computa-
tional capability of data processing.  

(B) VQE Implementation is shown as blue-colored steps in Fig. 1. It 
consists of processes mapping the Hamiltonian operator to VQE 
settings, which include three key factors: classical optimizer, 
entanglement pattern, and entanglement depth. These settings 
are crucial to the performance of Iterative Convergence.  

(C) Iterative Convergence includes purple-colored steps shown in 
Fig. 1. They span from quantum circuit design to the decision- 
making of cost function convergence, iterating until the mini-
mal eigenvalue estimate is obtained. The central inset of Fig. 1 
shows an example of a quantum circuit with entanglement 
pattern CX and entanglement depth = 1 applied on four qubits. In 
this part, efficiency is ensured by using a convergence mechanism 
and optimization strategy, while precision control influences the 
balance between computational cost and solution accuracy. 

2.1. ABAQUS pre-processing 

Within the ABAQUS/CAE environment, a scripting approach con-
verts the input of user-defined problem settings to the .MTX file outputs. 
The stiffness and mass matrices are the outcome of data processing. 

We develop pre-processing commands to generate a FEM model with 
a targeted number of free DOFs. The overall goal is to find a suitable 
combination of the total number of degrees of freedom nall

DOF and the 
prescribed (fixed) degrees of freedom nfixed

DOF in the model such that 
2N = nall

DOF − nfixed
DOF where N is an integer. The general procedures are 

summarized as follows: 

(1) Employ pre-processing Python script in the ABAQUS/CAE envi-
ronment to create an initial model with corresponding geometry, 
material properties, and boundary conditions.  

(2) Mesh the model with appropriate element types: T2D2 for the 
hexagonal truss, B21 for the Timoshenko beam, and CPE3/CPE4 
for the plane-strain continuum. 

Fig. 1. Pipeline of Variational Quantum Eigensolver algorithm for mechanics problems. The orange-colored steps refer to ABAQUS Pre-processing, those in blue to VQE 
Implementation, and the remaining in purple to Iterative Convergence. An example stiffness matrix is shown in the left dashed-frame inset. A particular instance of 
the “hardware-efficient ansatz” [26,27] is depicted in the central dashed-frame inset, where the entanglement pattern with 6 CX gates and depth = 1 is shown as an 
example. Additional examples are presented in Supplemental Material [28]. The right dashed-frame inset lists the key user-defined parameters. 
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(3) Adjust and modify the mesh of the model to reach the targeted 
number of free DOFs determined by N. For the beam system, a 
proper element size can be directly calculated for a given N, 
whereas for truss and continuum systems, we perform an iterative 
approach to adjust the assigned global element size (with sub-
sequent re-meshing). More details are presented in the Supple-
mental Material [28]. 

(4) Once the targeted free DOFs has been reached, export mass ma-
trix M and stiffness matrix K from ABAQUS. These matrices, by 
default, will include all DOFs as a result of the internal processing 
logistics.  

(5) Execute another Python script to read the exported mass and 
stiffness matrices from .MTX files. Then, apply partitioning to get 
the matrices with only free DOFs by filtering out columns and 
rows associated with boundary conditions. 

2.2. VQE implementation 

In the nascent stages of quantum computing, NISQ devices demon-
strate the practice of outpacing classical computers by leveraging 
exponentially fewer resources for certain computations. The implica-
tions of quantum computational abilities extend well beyond purely 
quantum mechanical realms. Due to the susceptibility of qubits to 
operational errors induced by quantum noise, algorithms suitable for 
NISQ systems are crafted to have a shallow circuit depth, enhancing 
their noise resilience. While constrained by such limitations, these noise- 
tolerant algorithms remain proficient in the physical interpretation of 
mechanical problems. The VQE algorithm stands at the forefront of 
NISQ applications, essential for calculating the ground state energy of a 
given Hamiltonian, which in turn reveals the fundamental natural fre-
quency of a mechanical system [23,40,41]. In this work, we demonstrate 
two types of implementations: a noise-free simulator and quantum 
processors [42]. 

Generally, a 2N × 2N square matrix needs N qubits to encode it as a 
quantum Hamiltonian. From the .MTX files exported from ABAQUS, we 
prepare and decompose our Hamiltonian as 

H = M− 1K =
∑

clPl, (1)  

where Pl ∈ {I, X, Y, Z}⊗N represents a multi-qubit (N-qubit) Pauli 
operator [43], and cl’s are coefficients of decomposition. 

The accuracy of the VQE depends on three key factors including 
classical optimizer [44,45], entanglement pattern [40,46], and entan-
glement depth [47,48]. In this study, we test all of the following.  

- Classical optimizers:  
– Simultaneous Perturbation Stochastic Approximation (SPSA) - a 

derivative-free optimization algorithm utilizing stochastic 
approximation of the gradient to efficiently handle large-scale 
problems [49].  

– Constrained Optimization by Linear Approximation (COBYLA) - a 
derivative-free optimization method using linear approximations 
for cost function and constraints to handle nonlinear optimization 
[50].  

– Sequential Least Squares Programming (SLSQP) - a quasi-Newton 
method using a sequence of quadratic programming sub- 
problems to handle constrained nonlinear optimization problems 
[51].  

– Limited-memory Broyden-Fletcher-Goldfarb-Shanno Bound (L- 
BFGS-B) - a quasi-Newton method using a limited amount of 
memory to approximate the inverse Hessian matrix for bound- 
constrained optimization [52].  

- Entanglement patterns:   
– Controlled Not (CNOT or CX) gate  
– Controlled Z (CZ) gate  
– Controlled Rotation X (CRX) gate  

- Entanglement depths:   
– An integer (1 ~ 10) specifying the quantum circuit 

Together, these components constitute a hardware-efficient ansatz 
(i.e., a parameterized quantum circuit) in the variational form of the 
“EfficientSU2” class [23]. In this class, the single-qubit gates manipulate 
individual quantum states, while entanglement patterns create correla-
tions among each pair of qubits, resulting in entangled states that are 
inseparable into individual quantum states. 

As a specific example, the central inset in Fig. 1 illustrates a partic-
ular instance of the ansatz comprising N = 4 qubits, utilizing single- 
qubit gates Rz and Ry, and adopting depth = 1 with entanglement 
pattern CX. In quantum state transformations, the single-qubit gates Rz 
and Ry are parameterized while the entanglement operators consisting 
of two-qubit CX gates are non-parameterized. 

First, quantum states are prepared for the qubits, and their initial 
joint state can be written as [53]. 

∣ψ〉⊗N
= ∣ψN− 1〉 ⊗ ⋯ ⊗ ∣ψ1〉 ⊗ ∣ψ0〉 = ⊗N− 1

j=0 ∣ψj〉, (2)  

where ⊗ denotes the tensor product between quantum states. Then, the 
initial joint state undergoes two sequential layers, or “slices”, of pre- 
rotation [43,54] denoted by the pre-operator Upre, and this results in 
[
⊗N− 1

j=0 Ry(θ2,j)
][
⊗N− 1

j=0 Rz(θ1,j)
][
⊗N− 1

j=0 ∣ψj〉
]

= ⊗N− 1
j=0

[
Ry(θ2,j)Rz(θ1,j)∣ψj〉

]
= Upre∣ψ〉⊗N

.
(3)  

Next, the states are fully entangled together by the entanglement oper-
ator CX gates, 

Uent =
∏N− 2

j1=0

∏N− 1

j2=j1+1
CXj1 ,j2 , (4)  

which is followed by another two “slices” of rotations, 

Urot =
[
⊗N− 1

j=0 Ry(θ4,j)
][
⊗N− 1

j=0 Rz(θ3,j)
]
, (5)  

where θ = {θs,j} is a set of variational parameters that controls the qubit 
states. The angle θ in a single-qubit gate Ry(θ) represents the magnitude 
of rotation applied to the quantum state around the y-axis of the Bloch 
sphere [43]. Executing an Ry(θs,j) gate effectively transforms the quan-
tum state by an angle θ in a qubit’s Hilbert space. Here, s = 1, …, 4 
indicates the “slice” of the single-qubit gates, and j, j1, j2 ∈ {0, 1, …, 
N − 1} are indices of qubits. The combined effect of Eqs. (4) and (5) 
constitutes one “depth”, and the total operator of the parameterized 
variational ansatz is 

U(θ) = [Urot][Uent][Upre]. (6)  

Alternative implementations of other entanglement patterns and ex-
pressions are presented in Supplemental Material [28]. 

2.3. Iterative convergence 

Regarding the accuracy of Iterative convergence, other tunable pa-
rameters are involved: 1) optimizer-dependent tol; 2) quantum 
processor-dependent shots, transpile optimization, statistical quantum 
state measurement, and error mitigation techniques; as well as 3) 
maximum number of iterations maxiter which depends on both the 
optimizer and quantum processor. 

In each iteration, a new quantum state is generated as 

∣ψ(θ)〉 = U(θ)∣ψ〉⊗N
, (7)  

where ∣ψ〉⊗N denotes the initial quantum states defined in Eq. (2). 
The new state ∣ψ(θ)〉 is then used to evaluate the cost function 

defined in Eq. (8), where ∣ψ(θ)〉 is the output quantum state determined 
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by both the parameters θ = {θs,j} shown in Eqs. (3) and (5) and the 
entanglement shown in Eq. (4). The quantum-classical hybrid iteration 
process successively alters the quantum circuit parameters to minimize 
the cost function, which is defined as: 

C(θ) = 〈ψ(θ)|H|ψ(θ)〉, (8)  

The hybrid algorithm iteratively updates the quantum-circuit parame-
ters θ using protocols encoded in the classical optimizer until it reaches 
either the user-defined tolerance tol or the maximum number of itera-
tions maxiter. Ideally, the convergence criterion, represented by the 
tolerance parameter, ensures convergence when the absolute difference 
between evaluations of two consecutive cost functions is smaller than 
the tolerance parameter, indicating proximity to the optimal solution of 
VQE Implementation. A list of user-defined parameters for the accuracy 
of Iterative Convergence:  

• tol represents the convergence criterion, which is used against the 
absolute approximate error: 
⃒
⃒Ej − Ej− 1

⃒
⃒ < tol, (9)  

where Ej is the ground state energy estimate of the j-th iteration.  
• shots is the number of times the quantum circuit is executed for each 

evaluation of the cost function, determining the statistical accuracy 
of Ej.  

• maxiter denotes the maximum number of iterations that an optimizer 
is allowed to go through. 

To minimize the effect of optimizer-dependent parameters on a noise- 
free simulator, as well as processor-dependent parameters on real 
quantum devices, we pre-define the following parameters with constant 
values to generate all data presented in this Letter. The noise-free 
simulator uses shots = 105 and maxiter = 105, while QPUs employ 
shots = 2 × 104 and maxiter = 100, which are the largest possible on the 
quantum hardware. In all cases, we set tol = 10− 4. 

When the threshold tol is reached by iterations, the optimization 
yields the final expectation value (i.e., minimized cost function) as 

C(θopt) = 〈ψ(θopt)
⃒
⃒H

⃒
⃒ψ(θopt)〉 ≈ Egs, (10)  

where θopt and Egs denote the optimal set of parameters and the quantum 
ground state energy, respectively. 

Upon convergence, we obtain 

λmin ≈ Egs and ∣ψmin〉 ≈ ∣ψ(θopt)〉, (11)  

where λmin is the minimum eigenvalue, and ∣ψmin〉 is the quantum state 
corresponding to λmin. 

Other parameters including transpile optimization, statistical quan-
tum state measurement, and error mitigation techniques depend on the 
gate fidelity, qubit connectivity, coherence time, and noise level of 
specific quantum hardware [55–58]. 

3. Example problem cases 

We investigate three different systems subjected to prescribed 
boundary conditions. In all cases, we use linear elastic, isotropic mate-
rial properties that are similar to steel with density ρ = 7850 kg∕m3, 
Young’s modulus E = 21 × 104 GPa, and Poisson’s ratio ν = 0.3. 

Case (I): The hexagonal truss, as illustrated in Fig. 2(a), consists of 
truss members with length L = 1.5 mm and circular cross-section radius 
r = 0.5 mm. Boundary conditions are applied in the following manner: 
(1) For nodes located at the bottom, displacements in both horizontal 
and vertical directions are fixed (u1 = u2 = 0); (2) For nodes at the left, 
right, and top sides, u1 is set to zero, whereas u2 is free. In this formu-
lation, a consistent mass matrix (rather than a lumped-mass matrix) is 
used. 

Case (II): The Timoshenko beam is illustrated in Fig. 2(b) with 
length L = 9 mm and circular cross-section radius r = 1 mm. For 
boundary conditions, the translational displacements u1 and u2 of both 
ends are set to zero. Here, we use the lumped-mass formulation for both 
mass and stiffness matrices. 

Case (III): The plane-strain continuum model, as depicted in Fig. 2 
(c), consists of a quarter section of a square with a circular cutout in its 
geometric center. The entire square is 2 mm × 2 mm, and the open hole 
has radius r = 0.5 mm. Boundary conditions are: x-symmetric constraint 
is prescribed on the left edge, while the y-symmetric constraint is pre-
scribed on the bottom edge. The right edge is constrained by u1 = 0. We 
also adopt the lumped-mass formulation in this case. 

4. Results and discussion 

4.1. Noise-free simulators 

To test the performance, we first execute the FEM-VQE pipeline on a 
noise-free quantum simulator (e.g., statevector_simulator on Qiskit). We 
conduct comprehensive parametric studies to evaluate the algorithmic 
performance in the search for fundamental natural frequency on prob-
lems with a wide range of DOFs varying from 8 to more than 8000. We 
measure the accuracy of VQE from parametric studies using the per-
centage error, 

Error(%) =
⃒
⃒λq − λc

⃒
⃒∕λc, (12)  

where λq and λc are eigenvalue estimates from VQE and conventional 

Fig. 2. Schematics of the three distinct case studies: (a) hexagonal truss, (b) Timoshenko beam, and (c) plane-strain continuum. Boundary conditions are prescribed 
at the locations denoted by yellow dots/lines. 
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classical solvers, respectively. 
Focusing on the following three sets of simulator-based parametric 

studies by fixing two key factors and varying: (a) optimizer types, (b) 
entanglement patterns, or (c) entanglement depths, we plot the error 
values defined by Eq. (12) in Figs. 3, 4, and 5 for all cases. Additional 
data in terms of convergence rates are presented in the Supplemental 
Material [28]. Our findings reveal that there is no one-size-fits-all 
particular set of parameters ensuring fast and accurate computation 
for all three cases. We discuss problem-specific performance character-
istics below. We note that all data presented here are reproducible due to 
the noise-free environment of the simulator. No statistical deviation may 
occur once all user-defined parameters have been set. 

Case (I) - For the choice of optimizers, Fig. 3(a) indicates that, except 
SLSQP, the error remains under 7.5% for all. There is no discernable 
difference among the other three optimizers. Sparse Hamiltonians can 
lead to an optimization landscape characterized by noisy gradient 
evaluations. Both SPSA and COBYLA demonstrate resilience in such 
noisy environments, enabling them to circumvent these challenges and 
function effectively even when gradient information is uncertain. 
Moreover, COBYLA exhibits superior navigation through the feasible 
regions of parameter space in the context of sparse Hamiltonians. This is 
attributable to the fact that the decomposition of sparse Hamiltonians 
can introduce nonlinear constraints within the optimization space. Fig. 3 
(b) does not show any apparent correlation between errors and entan-
glement patterns either. Furthermore, Fig. 3(c) shows that the error is 
always below 5% for any entanglement depth up to 7, and the best 
performance with errors below 3.5% can be consistently obtained when 
depth = 4. However, the errors tend to rise above 10% when depth = 8, 

9, or 10. Overall, we think an average error of 5% can be expected when 
applying the VQE algorithm to similar 2D truss problems. 

Case (II) - As illustrated in Fig. 4(a), optimizers COBYLA and L-BFGS- 
B deliver error-free outcomes, while SPSA and SLSQP show inferior 
performance. In this case, we employ the Hamiltonian derived from the 
lumped-mass-matrix formulation. This simplifies constraints and facili-
tates smoother navigation of parameter space when using L-BFGS-B. The 
energy landscape is convex, conducive to rapid convergence using quasi- 
Newton methods. Gradient-based approaches are particularly adept at 
seeking minima within such well-conditioned landscapes. Additionally, 
L-BFGS-B leverages gradient information to construct a quadratic model 
of the cost function, enhancing the accuracy of its convergence. While 
both SLSQP and L-BFGS-B incorporate bound constraints, L-BFGS-B 
demonstrates greater robustness in managing parameter constraints. 
Fig. 4(b) also shows error-free outcomes for all three entanglement 
patterns, and the largest error observed is only at the level of 0.035%. 
We think this is primarily due to both the lumped-mass-matrix formu-
lation and the high sparsity of the problem-specific Hamiltonian. Fig. 4 
(c) displays that, except for depth = 2, the errors remain under 2% for 
all. Overall, This case study shows that VQE tends to be much more 
accurate in dealing with similar quasi-1D beam problems. 

Case (III) - Fig. 5(a) shows that, among all four optimizer types, only 
optimizer L-BFGS-B produces errors consistently below 5%. Moreover, 
in contrast to data of Cases (I) and (II), Fig. 5(b) seems to show an 
advantage for using the entanglement pattern CX, which keeps the error 
under 5%. This may be due to the lumped formulation in the setup, 

Fig. 3. Errors of VQE results, as defined by Eq. (12), for Case (I): (a) Different 
optimizer choices with entanglement pattern CZ and depth 3. (b) Different 
entanglement patterns with optimizer COBYLA and entanglement depth 3. (c) 
Different entanglement depths with optimizer COBYLA and entanglement 
pattern CZ. 

Fig. 4. Errors of VQE results, as defined by Eq. (12), for Case (II): (a) Different 
optimizer choices with entanglement pattern CZ and depth 1. Note that, at 
N = 11 and 13, the errors by SLSQP shoot up to the level of 130%, which is out 
of the range of the plot. (b) Different entanglement patterns with optimizer L- 
BFGS-B and entanglement depth 1. (c) Different entanglement depths with 
optimizer L-BFGS-B and entanglement pattern CZ. Note that, at N = 13, the 
error by depth = 2 shoots up to the level of 12%, which is out of the range of 
the plot. 
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which results in a Hamiltonian characterized by independent quantum 
states and can fully leverage the entanglement. Here, the CX gate en-
hances correlations by introducing an additional rotation around the X- 
axis of the Bloch sphere, complementing the single-qubit gates with 
rotations around the Y- and Z-axes in the ansatz. Although we also adopt 
the lumped formulation in Case (II), the results among all entanglement 
types are all negligible there, as shown in Fig. 4(b). Hence, no similar 
advantage of CX is detectable in data from Case (II). In addition, Fig. 5(c) 
supports a definite advantage of shallow circuits, in which the depth = 1 
choice keeps the error consistently below 5% in Case (III). Overall, 
similar to the results in Case (I), we can expect that, through careful 
choices of the optimizer, entanglement pattern, and entanglement 
depth, we can expect an average error around 5% of VQE when it is used 
on plain-strain problems. 

Furthermore, we also assess the mean of errors (ME) and the stan-
dard deviation of errors (SDE) across the different degree-of-freedom 
(DOF) data points shown in Figs. 3, 4, and 5. For instance, in Fig. 3 
(a), employing different types of optimizers results in four sets of errors 
(data illustrated as four different colors), and we calculate the ME and 
SDE for each optimizer. The assessment of MEs and SDEs in all cases is 
presented in Supplemental Material [28]. 

4.2. Quantum processing units 

IBM QPUs are hardware designed to execute quantum computations. 
Employing qubits as their fundamental units of information, they 
harness the principles of quantum mechanics, which allow them to 
perform complex calculations far beyond the capability of traditional, 

binary-bit-based CPUs. 
Leveraging free and open quantum hardware resources, we execute 

our FEM-VQE pipeline on 5-qubit (e.g. ibmq_manila) and 7-qubit (e.g. 
ibm_nairobi) QPUs (e.g. Falcon r5.11H processors) via the IBM Qiskit 
Runtime platform. Guided by the error assessments presented in 
Figs. 3–5, as well as the allowable time and space limits on quantum 
devices, we choose optimizer COBYLA and entanglement depth 1 in all 
cases. Furthermore, we apply the entanglement pattern CZ for Case (I) 
and (II), and CX for Case (III). 

Unlike noise-free simulators, QPUs may suffer statistical deviations 
since random noise could alter the outcome. After conducting multiple 
(roughly ~ 10) trials of each calculation on QPUs, we summarize the 
mean VQE estimate λq and ME of each case in Table 1. The data indicate 
that the algorithm accumulates much more error on QPUs than it does 
on the noise-free simulator. Even for Case (II), which is the best 
performer on the simulator, our results show the errors can jump up to 
more than 30% when N > 5. Here, the reliability of the FEM-VQE 
pipeline can be impeded by three principal factors: 

First, the QPU capabilities are severely limited by the “quantum 
volume” (VQ) metric [59–61] available on the IBM Qiskit Runtime 
platform. The quantum volume of N qubits is defined by the formula VQ 
= 2min{N, path(N)}, where path(N) denotes the longest path of gate oper-
ations from start to end in each iteration. This directly influences the 
QPU performance. In the cases presented in this paper, we have path(N) 
= 10 for the entanglement depth 1. This results in VQ = 2N where N = 3, 
5, 6, 7, i.e., VQ = 8, 32, 64, 128. However, The current IBM QPUs have 
only the capability to handle up to VQ = 32 with a high degree of quality 
[62]. This presents a challenge, as it results in greater errors in contrast 
to outcomes from a noise-free simulator, which can support up to 5000 
qubits without quantum volume limitations. 

Second, transpilation [63,64] poses additional challenges which 
inflate circuit metrics including gates, depths, VQ, and error rates, 
further exacerbating the computational efficacy. This worsens the QPUs 
performance since the actual circuit depth can be increased by the 
transpilation, and deeper circuits produce more errors. In the end, the 
accumulative error may hinder the update of parameters in the cost 
function landscape. 

Third, the thermal noise and electromagnetic interference on QPUs 
corrupt the preparation and measurement of quantum state ∣ψ(θ)〉, 
resulting in low-quality of VQE estimates. 

Lastly, error accumulation deriving from the variational form of the 
ansatz and the classical optimizer can impair the accuracy of eigenvalue 
prediction. The ideal condition would be achieving a fault-tolerant 
result from an aptly parameterized quantum circuit U(θ) without clas-
sical computers, due to the risk of a sub-optimal solution caused by a 
barren plateau problem [65,66]. These considerations are inherent and 
unavoidable aspects of the current technological landscape. Although 
this also occurs on simulators, the effects are more pronounced with 
QPUs. 

4.3. Complexity 

The space complexity of the proposed hybrid algorithm depends on 
the amount of quantum memory. For example, N qubits can store the 
same amount of information that requires 2N conventional bits on 

Fig. 5. Errors of VQE results, as defined by Eq. (12), for Case (III): (a) Different 
optimizer choices with entanglement pattern CX and depth 1. (b) Different 
entanglement patterns with optimizer L-BFGS-B and entanglement depth 1. (c) 
Different entanglement depths with optimizer L-BFGS-B and entanglement 
pattern CX. 

Table 1 
Errors in QPU computations.   

λc λq ME (%) 

Case (I) (N = 6)  0.0771  0.0855 10.895 
Case (I) (N = 7)  0.0572  0.0688 20.280 
Case (II) (N = 3)  0.0343  0.0343 0.000 
Case (II) (N = 5)  0.0604  0.0606 0.331 
Case (II) (N = 7)  0.0354  0.0483 36.441 
Case (III) (N = 6)  0.0457  0.0535 17.068 
Case (III) (N = 7)  0.0317  0.0380 19.874  
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classical computers. This results in O(log(n)) space complexity on the 
quantum computer for a problem with n × n mass/stiffness matrices, 
even if they are non-sparse. In comparison, it requires the space 
complexity O(n2) in the classical computer to store a dense n × n matrix. 
In the case of dealing with sparse matrices, the scale of space-saving, as 
compared to the cases of dense matrices, is similar for both quantum and 
classical computers, thus maintaining the quantum advantage in terms 
of space complexity. 

The time complexity of the hybrid algorithm depends on quantum 
circuit complexity (quantum), measurement complexity (quantum-to- 
classical), and optimization complexity (classical). Take Fig. 1 with four 
qubits, two layers of pre-rotations, and one depth of entanglement as an 
example. 

First, the time complexity is O((log(n))2) on a simulator. Considering 
the hardware with different qubit connectivity constraints and coher-
ence times, the transpilation may increase the number of gates and lead 
to a higher time complexity than that on simulators. 

Second, the measurement complexity, determined by the necessary 
number of quantum measurements for precise eigenvalue estimation, 
typically scales with O(1∕ϵ2), where ϵ denotes the tolerance in numerical 
precision. For the three examples in our work, we choose a constant 
number of quantum measurements (shots) on the simulator and quan-
tum devices to minimize the effect of measurement. Assuming all 
measurements can be done concurrently as fully parallel processes in 
quantum hardware, the measurement complexity would be fixed since it 
no longer scales with the size of Hamiltonian. 

Third, the optimization complexity is primarily determined by the 
type of optimizer and the maximum number of iterations an optimizer is 
allowed to go through (maxiter). In this work, the maxiter is capped at a 
constant value. Thus, for a fixed-depth ansatz, the optimization 
complexity depends on the complexity of each iteration regarding a 
specific optimizer [45,67–70]:  

• SPSA: O(1), as it requires two evaluations of cost function regardless 
of the number of parameters [71].  

• COBYLA: O(p2), as it requires p linearization of cost function and 
constraints respectively [72].  

• SLSQP: O(p3), as it requires an approximation of the inverse Hessian 
matrix [73].  

• L-BFGS-B: O(p), as above, but it uses a limited memory approach to 
approximate the inverse Hessian matrix [74]. 

where p is the number of parameters with the same polynomial order as 
log(n). 

The theoretical bound of time complexity for each optimizer is 
established under ideal conditions. However, in practical scenarios, 
specific optimization and quantum hardware constraints present ob-
stacles in accurately determining time complexity. For example, the 
optimization landscape has barren plateaus that the gradients vanish 
exponentially with the increasing number of qubits, making it hard to 
estimate reliable energy states [75]. Additional explanations are pre-
sented in Supplementary Material [28]. 

In theory, compared with O(n3) for purely classical algorithms, the 
time complexity of the hybrid VQE approach scales with O((log(n))4) by 
using the ansatz depicted in Fig. 1 and the COBYLA optimizer. However, 
in the current implementation on readily accessible hardware devices, 
the time complexity of the VQE does not consistently offer an advantage 
over classical algorithms. Its efficiency is largely contingent upon spe-
cific factors such as the nature of the problem, the choice of optimizer, 
and the hardware used. This subject is currently a focal point of interest 
and remains an active area of research. 

5. Conclusion 

The successful implementation of a FEM-VQE pipeline presented in 
this Letter is the first step towards harnessing quantum computing to 

solve problems in solid mechanics and structural engineering. This 
computational framework could be particularly useful to researchers 
who wish to take advantage of the noisy intermediate-scale quantum 
(NISQ) computing devices that are rapidly becoming available now. Our 
parametric studies on (I) 2D truss, (II) 1D beam, and (III) plane-strain 
continuum cases provide direct evidence supporting the validity of 
this quantum-classical hybrid algorithm. On a noise-free simulator, our 
data prescribe the following set of optimal parameters: (I) COBYLA with 
CZ and depth = 4; (II) L-BFGS-B with CZ and depth = 1; (III) L-BFGS-B 
with CX and depth = 1. 

The VQE algorithm requires O(log(n)) space complexity compared to 
O(n2) in classical computers to store a n × n dense matrix. Theoretically, 
the time complexity of this hybrid method, employing the ansatz from 
Fig. 1 and the COBYLA optimizer, scales at O((log(n))4), compared to O 
(n3) for purely classical algorithms. 

While the demonstration detailed in this letter does not manifest 
quantum supremacy over classical computers in terms of accuracy or 
efficiency, it does validate the integrative methodology that couples 
ABAQUS with Qiskit VQE Implementation. This methodology holds the 
potential to address problems encompassing significantly more degrees 
of freedom as quantum computers continue to become more capable and 
more widely available. The large error values in our results are not a 
reflection of the shortcomings of the algorithm. Rather, they are indic-
ative of the current state of quantum computing technology [76–79]. 
The prospect of enhanced quantum processors, fortified with advanced 
error mitigation techniques and designed to operate at a utility-scale 
with improved quality, is an anticipated advancement that warrants 
keen attention [80,81]. For example, quantum hardware manufacturers 
are now making devices with up to 27, 65, 127, and 433 qubits available 
to the general research community [42]. This could potentially enable 
our FEM-VQE pipeline to solve complex mechanics problems with 108, 
1019, 1038, and 10130 DOFs like dispersion bands and 
optimization-based inverse design of architected materials. 

Declaration of Competing Interest 

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests: 
Yunya Liu and Jiakun Liu report equipment, drugs, or supplies was 
provided by International Business Machines Corp. Jordan R. Raney and 
Jiakun Liu report financial support was provided by National Science 
Foundation. 

Acknowledgment 

YL and PW are supported by both the Research Incentive Seed Grant 
Program and the start-up research funds of the Department of Me-
chanical Engineering at the University of Utah. JR and JL gratefully 
acknowledge support via National Science Foundation (NSF) FM 
2036881. JL was also partially supported by the NSF MRSEC program 
under award DMR-1720530. The support and resources from the Center 
for High-Performance Computing at the University of Utah are gratefully 
acknowledged. 

We acknowledge the use of IBM Quantum services for this work. The 
views expressed are those of the authors and do not reflect the official 
policy or position of IBM or the IBM Quantum team. In the process of 
developing the code necessary for this project, we also immensely 
benefited from the resources and community support provided by the 
IBM Qiskit channel. The coding techniques and strategies derived from 
this resource were instrumental in overcoming computational chal-
lenges and refining the efficiency of our algorithms. We wish to express 
our gratitude for valuable assistance and guidance from the Qiskit 
community. 

The authors declare no business or financial connections with either 
ABAQUS Inc. or IBM Corp. 

Y. Liu et al.                                                                                                                                                                                                                                      



Extreme Mechanics Letters 67 (2024) 102117

8

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.eml.2023.102117. 

References 

[1] M. Cerezo, A. Arrasmith, R. Babbush, S.C. Benjamin, S. Endo, K. Fujii, J. 
R. McClean, K. Mitarai, X. Yuan, L. Cincio, et al., Variational quantum algorithms, 
Nat. Rev. Phys. 3 (2021) 625. 

[2] L. Zhu, H.L. Tang, G.S. Barron, F. Calderon-Vargas, N.J. Mayhall, E. Barnes, S. 
E. Economou, Adaptive quantum approximate optimization algorithm for solving 
combinatorial problems on a quantum computer, Phys. Rev. Res. 4 (2022) 033029. 

[3] M. Sajjan, J. Li, R. Selvarajan, S.H. Sureshbabu, S.S. Kale, R. Gupta, V. Singh, 
S. Kais, Quantum machine learning for chemistry and physics, Chem. Soc. Rev. 
(2022). 

[4] R. Divya, J.D. Peter, Quantum machine learning: a comprehensive review on 
optimization of machine learning algorithms, in: Proceedings of the Fourth 
International Conference on Microelectronics, Signals & Systems (ICMSS) IEEE, 
2021, pp. 1–6. 

[5] H. Weimer, A. Kshetrimayum, R. Orús, Simulation methods for open quantum 
many-body systems, Rev. Mod. Phys. 93 (2021) 015008. 

[6] S. McArdle, S. Endo, A. Aspuru-Guzik, S.C. Benjamin, X. Yuan, Quantum 
computational chemistry, Rev. Mod. Phys. 92 (2020) 015003. 

[7] B. Bauer, S. Bravyi, M. Motta, G.K.-L. Chan, Quantum algorithms for quantum 
chemistry and quantum materials science, Chem. Rev. 120 (2020) 12685. 

[8] C.H. Bennett, G. Brassard, Quantum Cryptography: Public Key Distribution and 
Coin Tossing, arXiv preprint arXiv:2003.06557, 2020. 

[9] B. Huang, M. Govoni, G. Galli, Simulating the electronic structure of spin defects on 
quantum computers, PRX Quantum 3 (2022) 010339. 

[10] T. Ohgoe, H. Iwakiri, M. Kohda, K. Ichikawa, Y.O. Nakagawa, H.O. Valencia, S. 
Koh, Demonstrating Quantum Computation for Quasiparticle Band Structures, 
arXiv preprint arXiv:2307.14607, 2023. 

[11] V. Barone, S. Alessandrini, M. Biczysko, J.R. Cheeseman, D.C. Clary, A.B. McCoy, 
R.J. DiRisio, F. Neese, M. Melosso, C. Puzzarini, Computational molecular 
spectroscopy, Nat. Rev. Methods Prim. 1 (2021) 1. 

[12] S.S. Bharadwaj, K.R. Sreenivasan, Quantum Computation of Fluid Dynamics, arXiv 
preprint arXiv:2007.09147, 2020. 

[13] R. Demirdjian, D. Gunlycke, C.A. Reynolds, J.D. Doyle, S. Tafur, Variational 
quantum solutions to the advection–diffusion equation for applications in fluid 
dynamics, Quantum Inf. Process. 21 (2022) 322. 

[14] Y. Liu, Z. Chen, C. Shu, S.-C. Chew, B.C. Khoo, X. Zhao, Y. Cui, Application of a 
variational hybrid quantum-classical algorithm to heat conduction equation and 
analysis of time complexity, Phys. Fluids 34 (2022). 

[15] C. Lu, Z. Hu, B. Xie, N. Zhang, Quantum cfd simulations for heat transfer 
applications. ASME International Mechanical Engineering Congress and 
Exposition, Vol. 84584, American Society of Mechanical Engineers, 2020. 
V010T10A050. 

[16] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P.J. Coles, Variational 
Quantum Linear Solver, arXiv preprint arXiv:1909.05820, 2019. 

[17] X. Xu, J. Sun, S. Endo, Y. Li, S.C. Benjamin, X. Yuan, Variational algorithms for 
linear algebra, Sci. Bull. 66 (2021) 2181. 

[18] M. Lubasch, J. Joo, P. Moinier, M. Kiffner, D. Jaksch, Variational quantum 
algorithms for nonlinear problems, Phys. Rev. A 101 (2020) 010301. 

[19] D. Fang, L. Lin, Y. Tong, Time-marching based quantum solvers for time-dependent 
linear differential equations, Quantum 7 (2023) 955. 

[20] H. Krovi, Improved quantum algorithms for linear and nonlinear differential 
equations, Quantum 7 (2023) 913. 

[21] Y. Lee, K. Kanno, Modal Analysis on Quantum Computers Via Qubitization, arXiv 
preprint arXiv:2307.07478, 2023. 

[22] R. Babbush, D.W. Berry, R. Kothari, R.D. Somma, N. Wiebe, Exponential Quantum 
Speedup in Simulating Coupled Classical Oscillators, arXiv preprint arXiv: 
2303.13012, 2023. 

[23] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P.J. Love, A. Aspuru- 
Guzik, J.L. O’brien, A variational eigenvalue solver on a photonic quantum 
processor, Nat. Commun. 5 (2014) 1. 

[24] R.R. Ferguson, L. Dellantonio, A. AlBalushi, K. Jansen, W. Dür, C.A. Muschik, 
Measurement-based variational quantum eigensolver, Phys. Rev. Lett. 126 (2021) 
220501. 

[25] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, 
G.H. Booth, et al., The variational quantum eigensolver: a review of methods and 
best practices, Phys. Rep. 986 (2022) 1. 

[26] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J.M. Chow, J. 
M. Gambetta, Hardware-efficient variational quantum eigensolver for small 
molecules and quantum magnets, Nature 549 (2017) 242. 

[27] J.-B. You, D.E. Koh, J.F. Kong, W.-J. Ding, C.E. Png, L. Wu, Exploring Variational 
Quantum Eigensolver Ansatzes for the Long-range xy Model, arXiv preprint arXiv: 
2109.00288, 2021. 

[28] See Supplemental Information at Url for Additional Results and Further 
Derivations, 2023. 

[29] M. Oskin, F.T. Chong, I.L. Chuang, A practical architecture for reliable quantum 
computers, Computer 35 (2002) 79. 

[30] R.S. Smith, M.J. Curtis, W.J. Zeng, A Practical Quantum Instruction Set 
Architecture, arXiv preprint arXiv:1608.03355, 2016. 

[31] P.J. Karalekas, N.A. Tezak, E.C. Peterson, C.A. Ryan, M.P. daSilva, R.S. Smith, 
A quantum-classical cloud platform optimized for variational hybrid algorithms, 
Quantum Sci. Technol. 5 (2020) 024003. 

[32] K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim, V. Kliuchnikov, M. 
Mykhailova, A. Paz, M. Roetteler, Q# enabling scalable quantum computing and 
development with a high-level dsl, in: Proceedings of the real World Domain 
Specific Languages Workshop 2018, 2018, pp. 1–10. 
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V. Dunjko, T.E. O’Brien, Performance comparison of optimization methods on 
variational quantum algorithms, Phys. Rev. A 107 (2023) 032407. 

[46] X.-M. Zhang, T. Li, X. Yuan, Quantum state preparation with optimal circuit depth: 
implementations and applications, Phys. Rev. Lett. 129 (2022) 230504. 

[47] E. Malvetti, R. Iten, R. Colbeck, Quantum circuits for sparse isometries, Quantum 5 
(2021) 412. 

[48] N. Gleinig, T. Hoefler, An efficient algorithm for sparse quantum state preparation, 
in: Proceedings of the 58th ACM/IEEE Design Automation Conference (DAC), IEEE, 
2021, pp. 433–438. 

[49] Q.D. Team, SPSA kernel description, 2023. 
[50] Q.D. Team, COBYLA Kernel Description, 2023. 
[51] Q.D. Team, SLSQP Kernel Description, 2023. 
[52] Q.D. Team, LBFGSB Kernel Description, 2023. 
[53] JohnWright, Quantum Computation, lecture2:quantummathbasics, 2015. 
[54] Qiskit Contributors, Qiskit: An Open-source Framework for Quantum Computing, 

2023. 
[55] J. Allcock, P. Yuan, S. Zhang, Does Qubit Connectivity Impact Quantum Circuit 

Complexity? arXiv preprint arXiv:2211.05413, 2022. 
[56] P. World, Putting-quantum-noise-to-work Kernel Description, 2018. 
[57] X.-D. Yu, J. Shang, O. Gühne, Statistical methods for quantum state verification 

and fidelity estimation, Adv. Quantum Technol. 5 (2022) 2100126. 
[58] A. Holmes, S. Johri, G.G. Guerreschi, J.S. Clarke, A.Y. Matsuura, Impact of qubit 

connectivity on quantum algorithm performance, Quantum Sci. Technol. 5 (2020) 
025009. 

[59] A.W. Cross, L.S. Bishop, S. Sheldon, P.D. Nation, J.M. Gambetta, Validating 
quantum computers using randomized model circuits, Phys. Rev. A 100 (2019) 
032328. 

[60] K. Miller, C. Broomfield, A. Cox, J. Kinast, B. Rodenburg, An Improved Volumetric 
Metric for Quantum Computers Via More Representative Quantum Circuit Shapes, 
arXiv preprint arXiv:2207.02315, 2022. 
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ALTERNATIVE ENTANGLEMENT DEPTHS

In the main text, we mention the VQE entanglement pattern can be either CZ, CX, or CRX

and provide a depth = 1 with entanglement pattern CX as an example. Here we supplement

all the entanglement patterns in Fig. S1 with depth = 3 as a complete illustration of a

parameterized quantum circuit in standard VQE.

Figure S1. The entanglement patterns CZ, CX, and CRX in depth = 3.

The complete parameterized variational ansatz

U(θ) = [Urot,3][Uent,3][Urot,2][Uent,2][Urot,1][Uent,1][Upre]. (S1)

Changing entanglement pattern and depth has no effect on Upre, but Uent and Urot need

new definitions. Assume entanglement pattern CZ is applied, the states are fully entangled

together by the entanglement operator composing two-qubit CZ gates, and each particular

operator from Eq.(S1) is

Upre =

[
N−1⊗
j=0

Ry(θ2,j)

][
N−1⊗
j=0

Rz(θ1,j)

]
(S2)

Uent = Uent,1 = Uent,2 = Uent,3 =
N−2∏
j1=0

N−1∏
j2=j1+1

CZj1,j2 , (S3)
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Urot,1 =

[
N−1⊗
j=0

Ry(θ4,j)

][
N−1⊗
j=0

Rz(θ3,j)

]
(S4)

Urot,2 =

[
N−1⊗
j=0

Ry(θ6,j)

][
N−1⊗
j=0

Rz(θ5,j)

]
(S5)

Urot,3 =

[
N−1⊗
j=0

Ry(θ8,j)

][
N−1⊗
j=0

Rz(θ7,j)

]
(S6)

where θ = {θs,j} is a set of variational parameters, which control all the single-qubit gates,

s = 1, .., 8 indicates the “slice” of the single-qubit gates, and j, j1, j2 ∈ {0, 1, ..., N − 1} are

indices of qubits. The combined effects of Eqs.(S3) and (S4) constitutes one “depth”. To-

gether with another two “depth” of [Urot,2][Uent,2] and [Urot,3][Uent,3], the total parameterized

variational ansatz is complete.

As for the entanglement pattern CRX with depth 3, the Eq.(S3) of Uent is to be replaced by

Uent,1 =
N−2∏
j1=0

N−1∏
j2=j1+1

CRX(θ1,k)j1,j2

Uent,2 =
N−2∏
j1=0

N−1∏
j2=j1+1

CRX(θ2,k)j1,j2

Uent,3 =
N−2∏
j1=0

N−1∏
j2=j1+1

CRX(θ3,k)j1,j2

(S7)

where k = {1, 2, ..., N !
2(N−2)!

}, θ = {θd,k} is another set of variational parameters, which control

all the two-qubit gates (i.e., CRX). Here, d = 1, 2, 3 indicates the “slice” of the two-qubit

gates.
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VALIDATION OF CONVERGENCE

Here we present the convergence of fundamental quantum eigenvalue estimates for Case (I)

hexagonal truss system with the number of free DOFs: 2N (N = 6, 7, 8, 9, 10, 11, 12, 13) in

Fig. S2 and S3. There’s no determinant choice of a specific variational quantum eigensolver

setting across all Hamiltonians.

In Fig. S2 and S3, the top subplots apply different optimizer choices with entanglement

pattern CZ and depth 3, the middle subplots apply different entanglement patterns with

optimizer COBYLA and entanglement depth 3, and the bottom subplots apply different

entanglement depths with optimizer COBYLA and entanglement pattern CZ. The black

dashed line denotes the classical numerical eigenvalue for the same Hamiltonian. The black

vertical dashed line shows the iteration time of reaching the minimum eigenvalue estimate.

Based on the control variable of different optimizer choices, entanglement patterns, and

entanglement depths, the convergence rates vary. Take Fig. S2(b) for instance, the top sub-

plot contains the convergence behavior by applying optimizers SPSA (blue solid line) and

COBYLA (orange solid line), the former reaches optimal solution at around iteration time

105, whereas the latter reach the same optimal solution at 1/10 time of the former. In ad-

dition, adding depths in a parameterized quantum circuit won’t guarantee a more reliable

optimal solution due to the conflict of expressivity and accuracy, as well as the barren plateau

phenomenon. This is evidenced by Fig. S2(c), the bottom subplot covers entanglement depth

from 1 to 10, in which depth = 9 delivers the least optimal solution than all other depths

less than it.

Further, in Fig. S2(c)(d), and Fig. S3(f), the middle subplots show the convergence accu-

racy is not prioritized by entanglement pattern CZ across all problem-specific Hamiltonians,

though CZ preserves the Z-rotation and benefits the capturing of local minima during tuning

parameters in optimization. However, the entanglement patterns CX and CRX involve X-

rotation, aside from the single-qubit rotations about Y and Z-axes, and potentially interfere

with all qubits more thoroughly.

5



Figure S2. Convergence plots for hexagonal truss system with degrees of freedom of 2N (a) N=6,

(b) N=7, (c) N=8, (d) N=9
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Figure S3. Convergence plots for hexagonal truss system with degrees of freedom of 2N (e) N=10,

(f) N=11, (g) N=12, (h) N=13
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ERROR EVALUATIONS

In the main text, we display the relative error of VQE estimates compared to a classical

solver. The comparison of ME and SDE is shown in Table I to III for Case (I), Table IV to

VI for Case (II), and Table VII to IX for Case (III).

Case (I) - Table. I-III unveils that, the MEs consistently lie within a narrow 1% to 3%

range for depths ranging from 3 to 7. Given the trade-off between the expressivity of the

quantum circuit and accuracy, the preferred set of parameters is optimizer COBYLA with

entanglement pattern CZ and depth = 4, yielding a ME of 2.220% and an SDE of 0.802%.

Case (II) - Referencing Table. IV-VI, the employment of optimizer L-BFGS-B, entangle-

ment pattern CZ, and depth = 1 produces a ME of 0.005% and an SDE of 0.008%.

Case (III) - As evidenced by Table. VII-IX, utilizing optimizer L-BFGS-B with entangle-

ment pattern CX and depth = 1 results in a ME of 1.812% and an SDE of 1.735%.

For Figs. (4) and (5) in the main text, the outlier data points, which rocket far beyond errors

of 6% and 25%, respectively, are excluded to emphasize the reliable data points. But we

display the MEs and SDEs for overall results from Table.IV to IX.

The optimal set of parameters for Case (I) is not the most reliable choice for Case (III), as

shown in Table X to XII, and can be further reduced to data shown from Table VII to IX,

which suggests that there is still room for improvement in the VQE estimates.

Here, we analyze the impact of main factors among cases:

When comparing the MEs and SDEs for different choices of optimizers in Table. I, IV, and

VII, it suggests that the sparse Hamiltonians from Case (I) paired with optimizer COBYLA

offer superior predictions of VQE estimates. Conversely, lumped Hamiltonians with reduced

complexity from Case (II) and (III) feature lower MEs and SDEs when coupled with opti-

mizer L-BFGS-B.

The variance in MEs and SDEs due to entanglement patterns, as depicted in Tables. II, V,

and VIII, is attributed to the structural feature of the one-dimensional Case (II) used for

illustrative simplicity, where each node contains a concentrated lumped mass, and hence-

forth is not directly interacting with their nearby nodes. In contrast, the two-dimensional

Case (III), consisting of shell elements is more structurally integrated and responsive to the

8



interaction among nodal displacements due to a relatively more prominent coupling effect

between nodes. Regarding the effect of entanglement pattern CX in the same Tables, it

demonstrates reliable VQE estimates that remain sufficiently low MEs and SDEs.

Finally, the impact of entanglement depths on the prediction accuracy of the VQE estimates

requires additional investigation, since the calculation is intractable during the process of

optimizing parameters θ. Typically, a deeper entanglement is more expressive which ampli-

fies predictive accuracy. Yet, for Case (II) and (III), the MEs and SDEs in Table. III, IV,

and IX are intensified and the barren plateau phenomenon is exacerbated, possibly due to

reaching the criterion maxiter instead of threshold tol. In contrast, entanglement depths

from 3 to 7 with MEs below 3.177% and SDEs below 1.323% tend to be more advantageous

for sparse Hamiltonians in Case (I).
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MESH ADJUSTMENT FOR TARGETED DEGREES OF FREEDOM

Here we explain in more detail the developed pre-processing commands for mesh adjustment

and modification to reach a targeted number of free DOFs. The overall idea is to iteratively

refine the assigned element size and find a suitable value leading to a DOFs close to the

targeted value, and then insert a certain number of nodes by means of element edge splitting.

Take the Case (II) plane-strain continuum as an example, assuming that the target free DOFs

is 29 = 512, the following steps are applied. First, as shown in Fig. S4(a), the processing

command starts by creating a relatively coarse mesh by assigning a large element size such

that the total number of DOFs (nall
DOF) is smaller than the target value. Second, the assigned

element size is gradually reduced (i.e., the number of nodes and DOFs increase) until a

’suitable’ element size that would result in a free DOFs (nall
DOF − nfixed

DOF) that is close to, but

smaller than the target value, has been obtained. Such a ’suitable’ element size also needs

to result in an even value of difference towards the target value. As shown in Fig.S4(b), the

corresponding ’suitable’ mesh contains 434 free DOFs, and there are still 78 extra DOFs

needed to reach the target value. Then based on this difference, pick exactly 78/2 = 39

element edges not involved in essential boundary conditions and then ’split’ each of these

edges by inserting a new node in its midpoint, resulting in 78 new DOFs. As shown in a

magnified view in Fig.S4(d), each inserted node in a free edge would result in 2 new free

DOFs (horizontal and vertical displacements), and the inserted nodes will be connected to

nearby element vertices to form new elements, resulting in ’partitioning’ of some elements.

A simple way of picking edges as applied here is to find the longest 39 free element edges and

split them, and the final resultant mesh, as shown in Fig.S4(c), has exactly 512 free DOFs.
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Figure S4. Example of iterative mesh adjustments to reach a targeted number of free DOFs. (a)

Initial coarse mesh with 148 free DOFs. (b) A suitably fine mesh having 434 free DOFs. (c) The

final mesh contains 29 = 512 free DOFs after splitting 38 edges. (d) A magnified view of the final

mesh in (c) to illustrate the splitting of element edges and resultant element partitioning.
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