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Complete inverse design to customize two-dimensional dispersion relation
via nonlocal phononic crystals
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We report a new method to tailor the entire two-dimensional (2D) dispersion relation based on nonlocal
phononic crystals, where beyond-nearest-neighbor (BNN) interactions are used to achieve precise sculpting of
the band surface. Focusing on square lattices, we demonstrate unconventional band structures such as multifold
symmetries, roton/maxon/saddle-type critical points, anisotropy-to-isotropy transitions, and other exotic band
morphologies. We anticipate that the design protocols in this study can be extended to all other two-dimensional
lattices and multiband customization.
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I. INTRODUCTION

Phononic metamaterials manipulate wave propagation be-
yond the capabilities of natural materials [1–4]. They have
wide applications in noise reduction [5,6], energy harvesting
[7–9], and wave guiding [10–13] due to their unprecedented
capability to control wave propagation. Recent developments
in phononic metamaterials include geometric phase effects
[14,15], anharmonic response [16], localized modes [17–20],
frozen evanescent waves [21], band-gap engineering [22–26],
wave-number band gap [27], phononic topology [28], and the
study of snake states [29].

The dispersion relation is the central theme in this research
area since it describes how frequency depends on wave vec-
tors [30,31]. Customizing the dispersion relation can create
novel wave behaviors [32–34]. However, most metamaterials
with local interactions may manifest monotonic dispersion
bands only. Therefore, there are considerable limitations in
our ability to solve the inverse problem: Designing the lattice
structures from given target dispersion bands. In contrast,
incorporating beyond-nearest-neighbor (BNN) interactions,
nonlocal [35–37] metamaterials may achieve more exotic
wave phenomena [38,39], such as diffusive transport [40],
active control [7], maxonlike [41,42] and rotonlike proper-
ties [43–49], reflection/transmission behavior [50], as well
as extreme spatial dispersion [51]. All these properties were
achieved by focusing on the forward process and finding wave
behaviors from specific structures. A recent breakthrough [32]
on one-dimensional metamaterials showed the possibility of
inverse design to achieve any valid dispersion curves. How-
ever, the inverse design of two-dimensional metamaterials,
particularly for customizing dispersion relations, remains an
uncharted research area.

In this paper, we show the inverse design of two-
dimensional (2D) phononic crystals using BNN interactions
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to customize dispersion relations. We address the inverse
problem, enabling precise engineering of single-band disper-
sion in two-dimensional monoatomic lattices for scalar-wave
[52–54] propagation. Furthermore, we apply the inverse de-
sign process to several target dispersions, achieving band
structures of different symmetry groups, maxon/roton/saddle
points, anisotropy-to-isotropy transitions [55–58], and other
exotic 2D surface morphologies. Our method can accommo-
date both analytical expressions and numerical data as target
dispersion surfaces. Although we exclusively focus on the
square lattice in this paper, the same method can be applied
to all two-dimensional lattices, enabling a myriad of direc-
tions of future research. Our results contribute to fundamental
knowledge about the design and fabrication of advanced meta-
materials by enhancing our understanding of wave-material
interactions.

II. 2D NONLOCAL PHONONIC CRYSTALS

We start with a two-dimensional monoatomic square lattice
with identical masses m, illustrated as blue spheres in Fig. 1.
Linear springs, depicted as solid lines in Figs. 1(b)–1(d),
connect each mass to its (nx, ny)th neighbor, where nx, ny �
N , where the upper bound N indicates the lattice complex-
ity of the design. Neglecting the “self-connection” case of
(nx, ny) = (0, 0), we count that every lattice site has a total of
(2N + 1)2 − 1 connections with other sites. The well-known
local square lattice and the primary nonlocal interactions are
shown in Figs. 1(b) and 1(c), respectively. Figure 1(d) shows
some examples of longer-range nonlocal interactions with red
lines for (nx, ny) = (±2, 0) and (0,±2) as well as green lines
for (nx, ny) = (±1,±3). Applying Bloch’s theorem and solv-
ing the equations of motion, we derive the dispersion relation
of the two-dimensional monoatomic lattice (see Secs. I A and
I B of Supplemental Materials [59] for details) as

ω2(qx, qy) = 2

m
(K+ + K−), (1)
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FIG. 1. Schematics of the 2D square lattice for local and nonlocal
phononic crystals. (a) Arrangement of lattice points (blue spheres)
along the x and y axes. (b) Square lattice with local connections only.
The black lines represent linear springs. (c) Addition of some nonlo-
cal stiffness. (d) Illustration of more nonlocal interactions within the
lattice. The red and green springs are shown only for one mass for
clear visualization.

where

K± =
N∑

nx=0

N∑
ny=0

γ k±nx,ny [1 − cos (Qx ± Qy)], (2)

γ =
{

1
2 , nxny = 0

1, otherwise.
(3)

Here, ω denotes the frequency, while (qx, qy) represents the
wave vector, and we have

Qx = nxaxqx and Qy = nyayqy, (4)

where ax and ay are the lattice constants. In this context,
knx,ny characterizes the stiffness between any mass and its
(nx, ny)th neighbor, and we set k0,0 = 0. We note that, due to
the periodic nature of the lattice, the following always hold:

knx,ny = k−nx,−ny and k−nx,ny = knx,−ny . (5)

III. CONDITIONS FOR VALID TARGETS

Without any active or gyroscopic components in the de-
sign, the dispersion must satisfy the reciprocity condition,
which ensures the parity symmetry in the 2D wave-vector
space:

ω(qx, qy) = ω(−qx,−qy ). (6)

This guarantees that the dispersion surface is at least twofold
rotational symmetric. In addition, Hermiticity, passivity,
and periodicity dictate that the dispersion must satisfy the
following:

ω = 0, (qx, qy) = (0, 0)

ω > 0, (qx, qy) �= (0, 0)

∂ω/∂qx = 0, qx = ±π/ax (7)

∂ω/∂qy = 0, qy = ±π/ay.

Lastly, we need the target dispersion to be a smooth surface
defined over the first Brillouin zone (BZ) so that the wave-
group velocity is well defined for all possible wave vectors.
All conditions for a valid dispersion relation are described in
detail in Sec. I C of Supplemental Materials [59]. Addition-
ally, we do not consider any damping and nonlinear wave
dynamics in the system and the lattice size is infinite.

IV. INVERSE DESIGN

The dispersion relation in Eq. (1) resembles a two-
dimensional Fourier cosine series, which enables the precise
tailoring. Given any valid 2D dispersion surface �(qx, qy) as
the target, we first calculate the following integrals over the
first Brillouin zone (see Sec. I D of Supplemental Materials
for detail [59]):

Axy = axay

π2

∫∫
BZ

�2 cos(Qx + Qy) dqxdqy, (8)

Bxy = axay

π2

∫∫
BZ

�2 cos(Qx − Qy) dqxdqy. (9)

Next, we numerically integrate Eqs. (8) and (9) and obtain the
spring stiffness as necessary design variables

knx,ny = k−nx,−ny = −mAxy/(2γ ), (10)

k−nx,ny = knx,−ny = −mBxy/(2γ ). (11)

Applying the Fourier theory to two-dimensional space, we
note that sin(Qx ± Qy) and cos(Qx ± Qy) for nx, ny = 1, 2, ...

form a complete and orthogonal basis for all smooth periodic
functions. However, any Fourier series comprising sin(Qx ±
Qy) terms will not satisfy the validity conditions of parity
symmetry in Eq. (6). Thus, we confirm that our approach can
in principle achieve any valid dispersion surface.

To demonstrate the inverse design, we use target dispersion
bands defined by either closed-form analytical expressions
or arrays of numerical points. For this study, we standardize
the unit mass (m = 1) and lattice constants (ax = ay = 1) in
Eq. (1) for the square lattice. The remaining design variables
are knx,ny and k−nx,ny stiffness values. We set a limit on the
longest-range interaction as N = 30, allowing a maximum of
3720 connections at each mass, among which 4 are local,
while 3716 are BNN interactions. Because of Eq. (5), the
total number of design variables is 2(N2 + N ) = 1860. We
perform this inverse design for ten different target dispersions
and present them as case I through case X in the remaining
part of this paper. Furthermore, across all cases, we evaluate
the normalized root-mean-square deviation (NRMSD) of the
achieved dispersion from the target surface to ensure consis-
tent comparisons:

NRMSD =
√√√√ 1

T

∑
qx,qy

(
�(qx, qy) − ω(qx, qy)

�max

)2

, (12)

where the summation is taken over the first Brillouin zone.
�(qx, qy) and ω(qx, qy) denote the target and achieved dis-
persion bands, respectively, while T is the total number of
sampling points we use in the wave-vector space. We nor-
malize both dispersions using the maximum frequency of the
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FIG. 2. Demonstration of dispersion relations exhibiting n-fold rotational symmetries (i.e., Cn) within the BZ. Here, (a) and (c) display
the contour of dispersion relations with perfect C2 and C4 symmetry, respectively, illustrating the fundamental bidirectional and quadrilateral
symmetry inherent to the square lattice structure and their 3D views within the BZ are shown in (b) and (d). Furthermore, (e) and (g) present
nearly C6 and C8 symmetry, respectively, within a circular region of radius π and the center at (0, 0) wave number while (f) and (h) display
3D views of the corresponding dispersion. The yellow-marked triangle, circle, and star shapes represent maxon, roton, and saddle points,
respectively.

target, �max (see Sec. I E of Supplemental Materials [59] for
detail).

V. DISPERSION BANDS WITH MULTIFOLD SYMMETRIES

We investigate the possibility of achieving dispersion sur-
faces with rotational symmetries, labeled as Cn for the cyclic
group of order n, over the wave-vector space. While the time-
reversal symmetry guarantees C2 [60], the square lattice also
allows us to perfectly achieve C4, reflecting the square nature
inherent to the lattice configuration. Furthermore, we show
examples of nearly perfect C6 and C8 symmetries of the band
structures within the region with a radius of π from the center
of the first Brillouin zone. To achieve these target dispersions
for the 2D square lattice, we use Eqs. (8) and (9) to compute
the stiffness values knx,ny and k−nx,ny . Figures 2(a) and 2(b)
display the achieved dispersion relation with C2 symmetry
(case I). The target dispersion is defined analytically as

�2(qx, qy ) = 1
2 [5 − cos (qx ) − cos (qy) − cos (2qx )

− cos (2qy) − cos (qx + 3qy)], (13)

which is obtained directly from Eq. (1) and the lattice structure
is shown in Fig. 1(d) considering k±1,1 = 0. The rationale
behind targeting the dispersion of a known lattice is to eval-
uate the efficacy of our inverse design method in achieving a
lattice structure that is either identical or reasonably close to
the known one. We find that the NRMSD is negligible with
N � 3 for this case I, indicating a good performance of the

customization procedure. As our customization achieves exact
lattice structure for case I, we exclude the error analysis in
this case. This allows us to proceed to more arbitrarily defined
target dispersion surfaces.

Figures 2(c) and 2(d) show the achieved dispersion rela-
tions with C4 symmetry (case II) and the target equation as

�(qx, qy) = −(|qx| − π )2 − (|qy| − π )2 + 2π2, (14)

which has the semi-spherical geometry of radius π . Here,
we obtain NRMSD � 2% for N = 3, NRMSD � 1% for
N = 5, and NRMSD � 0.1% for N = 22. In addition, we
achieve NRMSD = 0.06% with N = 30, in which case only
224 out of 3716 BNN interactions have normalized stiffness
|k±nx,ny/k∗| > 0.001, where k∗ denotes the stiffness with
maximum absolute value in the lattice.

Given the inherent limitations of the square lattice, which
preclude perfect symmetries beyond C4, we show nearly per-
fect C6 and C8 symmetric dispersion bands within the square
lattice. Here, without using analytically defined targets such as
Eqs. (13) and (14), we instead use a 2D array of numerically
generated data (see Sec. I F of Supplemental Materials [59]
for detail) on the uniform grid of 1000×1000 points over the
first Brillouin zone as the target dispersion for the inverse
design. Figures 2(e) and 2(f) illustrate the achieved dispersion
showing nearly C6 symmetry (case III). This dispersion is
achieved with N = 4 lattice structure maintaining an NRMSD
� 1%. Furthermore, we obtain NRMSD � 0.1% for N = 16,
where 404 out of 3716 BNN connections have normalized
stiffness values greater than 0.001. Additionally, Figs. 2(g)
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FIG. 3. Error analyses for cases II, III, and IV dispersion rela-
tions shown in Figs. 2(c), 2(e), and 2(g), respectively, indicating the
lattice complexity needed to achieve 2%, 1%, and 0.1% NRMSD.

and 2(h) present the nearly C8 symmetric (case IV) achieved
dispersion surface. Our results show that a lattice of N = 30
can realize case IV dispersion with NRMSD � 0.025% and
only 98 BNN interactions have normalized stiffness higher
than the threshold we set. We also find NRMSD � 1% for
N = 4 and NRMSD � 0.1% for N = 12.

We calculate the errors between the target and achieved dis-
persions using Eq. (12) and provide the error-analysis plots in
Fig. 3 for cases II, III, and IV presented in Figs. 2(c)–2(h). The
results indicate that complex lattices with larger N perform
better. If aiming at NRMSD � 2%, we can use less complex
designs with N = 4. In contrast, achieving NRMSD � 0.1%
would necessitate more complex designs with N > 12. Here,
we omit the error analyses of case I shown in Fig. 2(a), as we
can achieve an exact match with N = 3 according to Eq. (13).

VI. DISPERSION WITH CRITICAL POINTS

Next, we apply our inverse design approach to cus-
tomize dispersion bands, introducing multiple localized
modes [20,32,43]—maxon/roton/saddle points. These zero-
group-velocity (ZGV) wave modes occur at the dispersion
surface’s critical points (CPs), where

∂ω

∂qx
= 0 and

∂ω

∂qy
= 0. (15)

For the case I dispersion in Figs. 2(a) and 2(b), we observe
four maxons (triangles), four rotons (circles), and six saddle
points (stars) within the BZ. Furthermore, the case III dis-
persion in Figs. 2(e) and 2(f) features six maxons and four

saddle points. We analyze the precision of achieving these
CPs by comparing their frequency and wave vector with the
prescribed targets. We start with defining the CPs as M1 and
M2 for maxons, as well as S for saddle point in Fig. 4(a).
Due to symmetry, we can exclusively focus on the CPs in
the first quadrant of BZ. Based on Eq. (15), Figs. 4(b)–4(f)
represent how the CPs appear when we change the lattice
complexity N . The CPs arise where the red curves (where
∂ω/∂qx = 0) and blue curves (where ∂ω/∂qy = 0) intersect.
Furthermore, to categorize the CPs, we analyze the Hessian
matrix of dispersion relation

H =
⎛
⎝ ∂2ω

∂q2
x

∂2ω
∂qx∂qy

∂2ω
∂qy∂qx

∂2ω
∂q2

y

⎞
⎠, (16)

of which the determinant delineates four types of CPs as

det(H) > 0 and ∂2ω/∂q2
x > 0, Roton

det(H) > 0 and ∂2ω/∂q2
x < 0, Maxon

det(H) < 0, Saddle point

det(H) = 0, Higher-order CP.

Note that we exclusively focus on first-order CPs (rotons,
maxons, and saddle points) in this paper, while the realization
of higher-order CPs [61,62] would be a worthwhile research
direction for future studies. As shown in Fig. 4(b), N = 2
provides only one CP in each BZ quadrant, while N = 3 gives
rise to both M1 and S in Fig. 4(c). Note that although the
NRMSD � 2% for N = 3, still M2 doesn’t appear. This mani-
fests that the localized customization of CPs is not guaranteed
by global error measures, such as the NRMSD. In contrast, all
cases with N � 4, as shown in Figs. 4(d)–4(f), exhibit all three
CPs, M1, M2, and S, in the target. We also conduct the error
analysis of frequency and wave vector of the CPs and present
the results in Figs. 4(g) and 4(h). We calculate the normalized
differences of frequency and wave vector between the target
and achieved CPs as

ErrorCP
ω =

∣∣ωCP
T − ωCP

A

∣∣
ωCP

T

, ErrorCP
q =

∥∥qCP
T − qCP

A

∥∥∥∥qCP
T

∥∥ , (17)

where ωCP
T and qCP

T indicate the frequency and wave vector,
respectively, at the CPs in target dispersion. Similarly, ωCP

A
and qCP

A correspond to the CPs in the achieved dispersion.
We observe that ErrorCP

ω and ErrorCP
q remain less than 2% in

Fig. 4(g) and less than 8% in Fig. 4(h), respectively, for all
CPs in the case III dispersion shown in Fig. 2(e). Although the
error in frequency and wave vector generally decreases with
higher lattice complexity, N , the trend is inconsistent across
all critical points discussed. However, the oscillation ampli-
tude of the error is tiny [e.g., ErrorCP

ω < 0.1% for N � 10 and
ErrorCP

q < 1% for N � 5 in Figs. 4(g) and 4(h), respectively].
Additionally, we do not specifically optimize for these dis-
crete points; instead, we observe how the customization of the
entire dispersion surface influences the accuracy at the critical
points.

The case IV dispersion in Figs. 2(g) and 2(h) features eight
maxons and eight saddle points. The exact locations of these
CPs in the case IV target dispersion are presented in Fig. 5(a)
by analyzing the first zero derivatives of ω using Eq. (15).
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FIG. 4. Analysis of critical points in the case III dispersion relation for various N values. Subfigures (a)–(f) display the first zero derivatives
of ω with respect to qx and qy. The derivatives ∂ω/∂qx = 0 is shown as red lines and ∂ω/∂qy = 0 as blue lines, with intersections indicating
critical points. Here, (a) presents the CPs in target dispersion, marked with yellow triangles for maxima (M) and stars for saddle points (S) and
labeled as M1, M2, and S for reference when comparing with achieved dispersion. Subsequent subfigures show CPs in achieved dispersions
for (b) N = 2, (c) N = 3, (d) N = 4, (e) N = 6, and (f) N = 16. For N = 2, critical points cannot be achieved; for N = 3, only M1 and S are
found; for N = 4, all M1, M2, and S appear but not at the exact wave number as the target dispersion; for N = 6, the wave number is very
close to the target function for all critical points; and for N = 16, all critical points are achieved, with the entire dispersion having NRMSD
� 0.1%. (g) and (h) show the normalized deviance of frequency and wave number, calculated using Eq. (17), at the CPs, respectively.

We discuss the possibility of achieving 4 CPs, M1 and M2
for maxons, as well as S1 and S2 for saddle points, in the
first quadrant of BZ since they represent all CPs based on the

fold symmetry. Our results show that we cannot achieve all
target CPs with N = 2 or N = 3, as shown in Figs. 5(b) and
5(c). In contrast, all four CPs appear for N = 4, Fig. 5(d), but

FIG. 5. Characterization of critical points in the case IV dispersion at different lattice structure. Subfigures (a)–(f) show the first derivatives
of ω in the wave-vector space. (a) Shows the CPs in the target dispersion, highlighted as yellow triangle for maxon and star for saddle points. In
addition, (b) N = 2 and (c) N = 3 provide only 3 CPs at each quadrant in the BZ while (d) N = 4 gives all the CPs in the target dispersion but
they do not appear at the same location. With the increasing lattice size (e) N = 6, and (f) N = 12, the CPs get closer to the exact location in
wave-vector space. Subfigures (g) and (h) present the normalized deviations of frequency and wave number, respectively, at the critical points.
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FIG. 6. Dispersion achievable in two-dimensional phononic metamaterials for various localized wave modes. Here, (a) shows a dispersion
with maxon, roton, and saddle points in pair due to the time-reversal symmetry including its 3D view in (b), and (c) represents dispersion
with multiple maxons, rotons, and saddle points with the 3D view in (d). Additionally, (e) displays a band featuring a ring of maxon and roton
indicated by the yellow rings, and (g) shows a flat dispersion band, and their 3D views are shown in (f) and (h), respectively.

their frequencies and wave vectors remain different from the
target. With larger N values in Figs. 5(e) and 5(f), we find that
the achieved CPs approach the target ones. We show the error
analysis of CPs in Figs. 5(g) and 5(h), respectively.

Next, we note that, due to the parity symmetry, each CP
must appear at least twice in the BZ. We set up a target
dispersion that includes a pair of each first-order CP type: 2
rotons, 2 maxons, and 2 saddle points, as shown in Figs. 6(a)
and 6(b) (case V). Our findings show that a lattice with N = 5
can achieve the case V dispersion with NRMSD � 1% us-
ing 88 out of 3716 BNN. Furthermore, a consideration of
NRMSD � 2% reduces the lattice complexity to N = 3 where
44 BNN interactions hold normalized stiffness higher than the
threshold. In contrast, we find that lattice complexity needs to
be greater than 30 to achieve NRMSD � 0.1% for case V. We
continue the dispersion customization to investigate the lattice
complexity when multiple CPs appear in the BZ. Figures 6(c)
and 6(d) show a dispersion with 12 maxons, 4 rotons, and
12 saddle points (case VI). In this case, we achieve NRMSD
� 2% for N = 5 and NRMSD � 1% for N = 7. Advancing
the customization of CPs, we include rings of maxon and
roton within the first BZ, as shown in Figs. 6(e) and 6(f)
(case VII), with the analytical expression

�2(qx, qy) = 2 − cos
(√

q2
x + q2

y

) − cos
(
2
√

q2
x + q2

y

)
. (18)

Equation (18) has two distinct localized modes: maxon ring
and roton ring, with radii of π/2 and π , respectively, high-
lighted by the yellow circles in Fig. 6(e). We achieve the case
VII dispersion with N = 3 resulting in an NRMSD � 1%
using only 44 out of 3716 BNN interactions. Also, a lattice

with N = 13 gives NRMSD � 0.1% to achieve these rings
of maxon and roton. We customize a flat band (case VIII)
dispersion, which maintains a constant frequency value after
reaching a maxon ring localized mode. Analytically, a flat
band is expressed as

�2(qx, qy) =
{

q2
x + q2

y if q2
x + q2

y < π2/4,

π2/4 if q2
x + q2

y � π2/4,
(19)

which has a maxon ring at q2
x + q2

y = π2/4. The achieved case
VIII dispersion’s contour is shown in Fig. 6(g) with a three-
dimensional (3D) view in Fig. 6(h) where it has a constant
frequency of ω = π/2 when q2

x + q2
y � π2/4. We achieve an

NRMSD � 2% for a lattice size of N = 5, requiring only 106
out of 3716 BNN interactions. Furthermore, for N = 7, we
achieve the case VIII dispersion with NRMSD � 1%.

For comprehensive clarity, we have tabulated all targets
and achieved dispersion relations, their respective lattice com-
plexities for 2%, 1%, and 0.1% NRMSD, in Table I.

For all the cases V–VIII discussed in Fig. 6, we show the
error analyses between the target and achieved dispersions in
Fig. 7. Here, we also notice that the complex lattices with
larger N perform better. If aiming at NRMSD � 2%, a design
with N = 5 is sufficient for all the dispersions mentioned
in Fig. 6. Our results show that N � 13 confirms NRMSD
� 0.1% for case VII. In contrast, the case VIII dispersion
needs N � 28 to achieve NRMSD � 0.1% while the cases
V and VI dispersion need N > 30 to reduce the NRMSD
� 0.1%. We show more cases with localized mode in Sec. II A
of Supplemental Materials [59].
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TABLE I. The lattice complexity required to achieve 2%, 1%,
and 0.1% NRMSD.

Minimum N for
Target NRMSD threshold

dispersion 2.0% 1.0% 0.1%

I. C2 symm, Figs. 2(a),2(b) 3 3 3
II. C4 symm, Figs. 2(c),2(d) 3 5 22
III. Nearly C6 symm, Figs. 2(e),2(f) 3 4 16
IV. Nearly C8 symm, Figs. 2(g),2(h) 4 4 12
V. Critical pts, Figs. 6(a),6(b) 3 5 −
VI. Critical pts, Figs. 6(c),6(d) 5 7 −
VII. Critical rings, Figs. 6(e),6(f) 2 3 13
VIII. Flat-band, Figs. 6(g),6(h) 5 7 28
IX. Aniso.-to-iso., Figs. 8(a),8(b) 5 7 22
X. Aniso.-to-iso., Figs. 8(c),8(d) 3 5 28

VII. ANISOTROPY-TO-ISOTROPY TRANSITIONS

Lastly, we consider customizing dispersion bands show-
ing transitions from anisotropy-to-isotropy wave behavior.
Figures 8(a)–8(b) and 8(c)–8(d) represent achieved dispersion
bands of phononic crystal that undergo anisotropy-to-isotropy
transitions, showing C2 (case IX) and C4 symmetries (case X),
respectively. Cases IX and X dispersion bands are constructed
through 2D array of frequency data that form highly noncir-

FIG. 7. Error analyses for the Cases V, VI, VII, and VIII disper-
sion relations shown in Figs. 6(a), 6(c), 6(e), and 6(g), respectively,
indicating the lattice complexity needed to achieve 2%, 1% and
0.1%.

FIG. 8. Dispersion characteristics, showing the transition from
anisotropy-to-isotropy within the first BZ for (a) C2 and (c) C4 sym-
metries, highlighting their pronounced anisotropic behavior as the
wave number (qx, qy ) approaches zero and its transition to isotropy
as (qx, qy ) approaches ±π . Here, (b) and (d) show the 3D views
of dispersion bands with C2 and C4 symmetries, respectively, with
enlarged views. The top and bottom enlarged portions in (b) and
(d) highlight the surfaces within the normalized frequency ranges
of 0.7-0.8 and 0.3-0.4, respectively. The top portions demonstrate
isotropic behavior, while the bottom portions reveal anisotropic be-
havior, and (e) represents the NRMSD analyses with the lattice
complexity.

cular contours at lower wave numbers and transit to perfect
circular contours at higher wave numbers.

We evaluate the errors between the target and achieved
dispersions using Eq. (12), and Fig. 8(e) provides the error-
analysis plots for both cases with anisotropy-to-isotropy
transition. For the case IX dispersion in Fig. 8(a), we obtain
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NRMSD � 2% for N = 5, NRMSD � 1% for N = 7, and
NRMSD � 0.1% for N = 22. The case X dispersion in
Fig. 8(c) needs N = 3, 5, and 28 to maintain NRMSD �
2%, 1%, and 0.1%, respectively. We find 160 and 376 out of
3716 BNN interactions are sufficient to keep NRMSD 0.1%
for cases IX and X, respectively. We present more anisotropy-
to-isotropy transition cases and some exotic dispersion in
Secs. II B and II C of Supplemental Materials [59].

VIII. CONCLUSION

In this theoretical research, we demonstrate the cus-
tomization of two-dimensional phonon dispersions by the
inverse-design approach of nonlocal phononic metamaterials.
We show the feasibility of designing phononic crystal lat-
tices to match any valid dispersion bands, whether defined
by analytical expressions or arrays of numerical points. We
accomplish the design of dispersion bands with multifold ro-
tational symmetry. We also show the possibility of introducing
critical points representing localized wave modes. We report
the lattice complexities corresponding to different levels of
global deviation (NRMSD) in Table I. For all ten cases, the
NRMSD less than 2% and 1% can be achieved with N = 5
and 7, respectively. We also note that the global NRMSD does
not guarantee the existence of critical points (CPs) prescribed
in the targets. To achieve the appearance of all CPs at the
desirable frequency and wave vector, we need lattices with
higher complexity. In addition, our work also demonstrates an
unusual anisotropy-to-isotropy transition of dispersion surface

while moving from low to high wave numbers. This work
points to a new avenue of metamaterial research by customiz-
ing wave dispersion properties.

Translating this theoretical research into practical metama-
terials presents significant challenges due to the complexity
of numerous BNN interactions within the lattice. How-
ever, recent advances in metamaterials, particularly involving
negative stiffness [63–68] and cubic-symmetry acoustic meta-
materials with intricate nonlocal interactions [46,69,70], offer
a promising pathway. Additionally, applying machine learn-
ing approaches, such as sparsity-promoting optimization
[71,72], may help reduce the number of BNN interactions.
These developments suggest that additive manufacturing
might be a viable method for realizing these complex designs.

The stiffness data for all cases from the inverse design,
numerical target dispersion data, and code we use in this study
are available in the GitHub repository [73].
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