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A B S T R A C T

We investigate the effect of a constant static bias force on the dynamically induced shape morphing of a pre-
buckled bistable beam, focusing on the beam’s ability to change its vibration to be near different stable states
under harmonic excitation. Our study explores four categories of oscillatory motions: switching, reverting,
vacillating, and intra-well in the parameter space. We aim to achieve transitions between stable states of the
pre-buckled bistable beam with minimal excitation amplitude. Our findings demonstrate the synergistic effects
between dynamic excitation and static bias force, showing a broadening of the non-fractal region for switching
behavior (i.e., switching from the first stable state to the second stable state) in the parameter space. This
study advances the understanding of the dynamics of key structural components for multi-stable mechanical
metamaterials, offering new possibilities for novel designs in adaptive applications.
Bistable buckled beams find application across mechanical meta-
aterials [1–5], energy harvesters [6–10], programmable mechanical
evices [11,12], energy absorbers [13,14], and MEMS devices [15–17].
istable systems, known for their two stable equilibrium states, offer
 promising avenue for applications that require morphing [18,19]
nd reconfiguration [20–24]. However, quasi-static shape morphing
f bistable buckled beams is known to be energy-intensive and time-
onsuming [25–30]. Vibration-induced shape morphing offers an alter-
ative to quasi-static methods, requiring lower actuation amplitude and
everaging the inherent nonlinear dynamics of bistable systems [31–
3]. By utilizing dynamic excitation, vibration-induced shape morphing
ffectively facilitates switching, reverting, and vacillating behavior,
esulting in rapid and energy-efficient shape morphing [32]. Nonethe-
ess, the parameter space of a symmetric bistable system reveals that
witching and reverting behaviors coexist in an intertwined chaotic
egion [32,34–39]. This coexistence creates challenges in selecting the
ppropriate combination of forcing amplitude and frequency to switch
etween stable states. By exploiting asymmetric bistability [40–42],
he switching behavior region within the parameter space of a bistable
uckled beam can be broadened, thereby enhancing the feasibility of
sing dynamic excitation for shape morphing. Recent research demon-
trates that we can tune the quasi-static response of magnetized buckled
eams under applied magnetic fields—specifically, their quasi-static

∗ Corresponding author.
E-mail address: pai.wang@utah.edu (P. Wang).

force–displacement curves and energy landscapes exhibit asymmetric
bistable behavior [43–46]. The translation of the force–displacement
curve up or down along the force axis is linearly proportional to the
applied magnetic field [43,44].

In this letter, we apply a static bias force in combination with
dynamic excitation, exploiting asymmetric bistability to morph the
bistable buckled beam between stable states. Our investigation focuses
on enhancing the morphing of bistable beams through the synergistic
combination of static bias forces and low-amplitude dynamic excita-
tion to switch between the states of the bistable buckled beam. By
manipulating the energy landscape using a static bias force, we aim
to achieve faster and more reliable control over the bistable buckled
beam’s dynamic transitions, thereby broadening the switching behavior
region in the parameter space of a bistable buckled beam and increas-
ing the predictability of shape morphing. Our approach advances the
theoretical understanding of bistable beam dynamics and opens new
avenues for efficient shape morphing of bistable systems.

Initially, we consider a straight beam. We apply a compressive axial
load that exceeds the critical buckling load, 𝑃cr (see Eq. (1)), to the left
end as depicted in Fig. 1(a),

𝑃cr =
4𝜋2𝐸 𝐼
𝐿2

, (1)
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𝑢

Fig. 1. Shape morphing of a bistable buckled beam exploiting symmetric bistability and
dynamic excitation: (a) Schematic diagram of the beam’s initial straight configuration.
(b) Initially, the straight beam is compressed past the critical buckling load, 𝑃cr, to
achieve a static deflection denoted as �̂�0 with the fixed end. It can subsequently be
dynamically excited to switch between its two stable states. (c) Analytical and finite ele-
ment analysis (FEA) results showing switching behavior with dimensionless parameters
(𝐺 , 𝛺) = (0.100, 1.17595), reverting behavior with parameters (𝐺 , 𝛺) = (0.125, 1.209412),
aperiodic vacillating behavior with parameters (𝐺 , 𝛺) = (0.175, 1.13291), and intra-well
behavior with parameters (𝐺 , 𝛺) = (0.150, 1.30506), all under a constant damping ratio
of 𝛾 = 0.07. The results demonstrate good agreement between the analytical predictions
and the FEA.

where 𝐿, 𝐸, and 𝐼 = 𝑏𝑡3

12 represent the length, Young’s modulus, and
moment of inertia of the buckled beam, respectively. The compressive
axial load buckles the beam to a static deflection position, defined by
Eq. (2) [47],

�̂�𝑜(�̂�) = ℎ
2

{

1 − cos
(

2𝜋 �̂�
𝐿

)}

. (2)

We then fix both ends of the beam, resulting in a curved beam, as
shown in Fig. 1(b). The initial static deflection of the beam is defined by
Eq. (2) and the vertical rise of the midpoint is given by �̂�𝑜(𝑥 = 𝐿

2 ) = ℎ,
where ℎ represents the amplitude of the first buckled mode shape of
the clamped-clamped beam.

The beam has two stable states (Fig. 1(b)). We can induce a switch
between its stable states by applying harmonic excitation at the mid-
point, given by �̂�𝑜(𝑥 = 𝐿

2 ) = ℎ, as illustrated in Fig. 1(b). To model
the bistable buckled beam analytically, we begin with the nonlinear
Euler–Bernoulli beam equation, which is represented by Eq. (3) [48],

𝐸 𝐼 𝜕
4�̂�
𝜕 ̂𝑥4 + 𝑃𝑐 𝑟 𝜕

2�̂�
𝜕 ̂𝑥2 + 𝜌𝐴𝜕2�̂�

𝜕𝑡2
+ �̂�𝑑 𝜕�̂�

𝜕𝑡

− 𝐸 𝐴
2𝐿

{

∫

𝐿

0

[

(

𝜕�̂�
𝜕 ̂𝑥

)2
+ 2 𝜕�̂�

𝜕 ̂𝑥
𝜕�̂�𝑜
𝜕 ̂𝑥

]

𝑑 ̂𝑥
}

×

(

𝜕2�̂� +
𝜕2�̂�𝑜

)

= 𝐹 cos (�̂�𝑡).

(3)
2

𝜕 ̂𝑥2 𝜕 ̂𝑥2
By approximating the first buckling mode using Eq. (2) and applying
Galerkin approximation, we discretize Eq. (3) into Eq. (4), which rep-
resents the symmetric bistable Duffing equation [49] (see supplemental
materials [49] for detailed derivation).

̈ + 𝛾 ̇𝑢 − 𝑢 + 𝑢3 = 𝐺 cos (𝛺 𝜏), (4)

where 𝐺, 𝛺, 𝛾 are the non-dimensionalized forcing amplitude, exci-
tation frequency, and damping ratio, respectively (see supplemental
materials [49] for derivations). Eq. (4) depicts the dimensionless sym-
metric bistable Duffing equation, characterized by double-well poten-
tial with two stable equilibrium points at 𝑢−1 = −1 and 𝑢+1 = +1.
These points are separated by an unstable equilibrium, or ‘‘hilltop’’,
at 𝑢0 = 0 [32]. Fig. 1(c) illustrates four distinct behaviors: switching,
reverting, vacillating, and intra-well. Our previous study established
numerical criteria to distinguish among these behaviors by conducting
time-domain simulations on Eq. (4) [32]. We fix the initial conditions
in all simulations at (𝑢, �̇�) = (−1, 0). Here, we verify four distinct behav-
iors by conducting finite element analysis using Abaqus/Standard. We
normalize all the dimensions using the initial vertical rise of the beam
�̂�𝑜(𝑥 = 𝐿

2 ) = ℎ = 5.22 mm. Initially, we model a straight beam with
normalized dimensions: length 𝐿∕ℎ = 11.5, thickness 𝑡∕ℎ = 0.2, and
width 𝑏∕ℎ = 1.92. This beam undergoes buckling when subjected to a
load exceeding the critical buckling load, which is 𝑃cr𝐿2

𝐸 𝐼 = 39.478 (see
supplemental materials [49] for detailed derivation). Subsequently, we
perform a modal analysis on the buckled beam in Abaqus/Standard to
identify its first buckling mode. We use B21 elements and a hyperelastic
material, Dragon Skin 30 [50], which is nearly incompressible (Pois-
son’s ratio 𝜈 ≈ 0.495), with an initial Young’s modulus of 𝐸 = 0.74 ± 0.07
MPa [51], to model the bistable buckled beam.

Then, we perform dynamic implicit analysis to confirm the four
types of behavior predicted analytically: switching behavior with di-
mensionless parameters (𝐺 , 𝛺) = (0.100, 1.17595), reverting behavior
with parameters (𝐺 , 𝛺) = (0.125, 1.209412), aperiodic vacillating behav-
ior with parameters (𝐺 , 𝛺) = (0.175, 1.13291), and intra-well behavior
with parameters (𝐺 , 𝛺) = (0.150, 1.30506), all under a constant damping
ratio of 𝛾 = 0.07. Fig. 1(c) demonstrates good agreement between
analytical and FEA results for these behaviors. The static component
of Eq. (4), 𝐹static = −𝑢 + 𝑢3, characterizes an energy landscape with
equal potential wells, requiring a substantial static actuation force of
0.38 units to transition the bistable buckled beam from one stable
state to another [32]. Fig. 1(c) demonstrates that dynamic excitation
of the bistable system can significantly reduce the required actua-
tion force compared with quasi-static actuation [32]. In a previous
study, we presented the forcing amplitude–frequency parameter space
for a symmetric bistable Duffing system at a constant damping ratio
of 𝛾 = 0.07 [32]. The findings revealed that although low forcing
amplitudes can produce four distinct behaviors, the simultaneous ex-
istence of switching, reverting, and vacillating behaviors near each
other in this parameter space leads to an intertwined chaotic region.
The intertwined chaotic region in the parameter space complicates the
selection of an appropriate switching frequency and forcing amplitude
for transitioning the bistable buckled beam between its stable states.

Recent studies have demonstrated that applying a magnetic field
can programmatically alter the energy landscape of a magnetized
bistable buckled beam, allowing for the tuning of stability character-
istics and modification of the energy landscape through static anal-
ysis under varying magnetic fields [43–46]. In particular, the force–
displacement curve experiences a linear translation toward one of
the stable states, dictated by the direction of the applied magnetic
field [43,44].

Building on this concept, we apply a static bias force 𝑃 (B) to linearly
shift the force–displacement curve along the force axis, altering the
system’s energy landscape. By adjusting 𝑃 (B), we can manipulate the
stability characteristics of the beam, achieving a controlled shift similar
to the effects observed with magnetic fields. Incorporating 𝑃 (B) as
a static bias force changes Eq. (4) to Eq. (5), altering the system’s
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Fig. 2. Tuning stability characteristics of force–displacement and energy landscapes
under varying static bias forces 𝑃 (B): (a) Evolution of the force–displacement curve,
showing linear shifts along the force axis in response to varying levels of static bias
force, 𝑃 (B). (b) The transition from symmetric bistable to asymmetric bistable energy
landscapes with increasing static bias force. (c) A linear relationship between the
absolute value of 𝐹min,static and the static bias force 𝑃 (B). (d) A demonstration of
combined static bias force and dynamic excitation to the bistable buckled beam.

response. Eq. (5) is the dimensionless asymmetric bistable Duffing
equation, characterized by an asymmetric double-well potential with
two stable equilibrium points. The impact of the static bias force 𝑃 (B)
on the symmetric bistable system is understood through the static
component of Eq. (5), 𝐹static = −𝑢 + 𝑢3 − 𝑃 (B). This influence is
visually demonstrated in Figs. 2(a) and (b), which show how the
force–displacement and energy-displacement curves change with the
application of 𝑃 (B) (see supplemental materials [49] for more re-
sults). Specifically, the potential well at the stable equilibrium point
𝑢−1 = −1 increases, while the potential well at 𝑢+1 = +1 decreases.
Fig. 2(c) presents the absolute value of 𝐹min,static, the minimum force
in the second stable state, for each force–displacement curve across
varying values of 𝑃 (B), demonstrating a linear relationship between
absolute value of 𝐹min,static and the static bias force 𝑃 (B). Now, we
can apply a combined static bias force with dynamic excitation to
switch the bistable buckled beam from one stable state to another, as
demonstrated in Fig. 2(d).

�̈� + 𝛾 ̇𝑢 − 𝑢 + 𝑢3 = 𝐺 cos (𝛺 𝜏) + 𝑃 (B), (5)

We next conduct a time-domain simulation using the fourth-order
Runge–Kutta scheme to solve Eq. (5) for 𝑃 (B) = 0.100 with parameters
of (𝐺 , 𝛺) = (0.125, 1.209412) of the reverting behavior of Fig. 1(c)
and a damping ratio of 𝛾 = 0.07. Fig. 3(a) presents the simulation
results, demonstrating that under the influence of a static bias force,
the reverting behavior depicted in Fig. 1(c) transitions to the switch-
ing behavior. Similarly, for the vacillating behavior with parameters
(𝐺 , 𝛺) = (0.175, 1.13291) and a damping ratio of 𝛾 = 0.07, the static bias
force of 𝑃 (B) = 0.100 changes the vacillating behavior of Fig. 1(c) into
the switching behavior, as shown in Fig. 3(b).

Figs. 3(c)–(f) display the forcing amplitude–frequency parameter
space within the ranges 0.80 ≤ 𝛺 ≤ 1.8 and 0.03 ≤ 𝐺 ≤ 0.30,
with a damping ratio of 𝛾 = 0.07 and static bias forces 𝑃 (B) =
0.04, 0.100, 0.200, 0.300 respectively. For each combination of (𝐺 , 𝛺), we
3

Fig. 3. Morphing of the bistable buckled beam’s behavior due to combined dynamic
excitation and static bias force: (a) The reverting behavior depicted in Fig. 1(c)
transitions to switching behavior when subjected to both dynamic excitation and a static
bias force. (b) Similarly, the vacillating behavior shown in Fig. 1(c) shifts to switching
behavior under the same combined forces. Panels (c), (d), (e), and (f) display the forcing
amplitude–frequency parameter space for the bistable buckled beam with a damping
ratio of 𝛾 = 0.07 and static bias forces of 𝑃 (B) = 0.04, 0.100, 0.200, 0.300 respectively.
The light gray ○ and ▵ in Fig. 3(d) indicate the points where the reverting behavior
with parameters (𝐺 , 𝛺) = (0.125, 1.209412) and the aperiodic vacillating behavior with
parameters (𝐺 , 𝛺) = (0.175, 1.13291) under 𝑃 (B) = 0.100 transition into switching
behavior.

conduct time-domain simulations of Eq. (5) across these parameter
ranges, incorporating the aforementioned damping ratios and static
bias forces. Figs. 3(c)–(f) present the results for 𝑃 (B) = 0.04, 0.100,
0.200, 0.300, plotted on a 256 × 256 grid (for additional results with
other 𝑃 (B) values, see supplemental materials [49]). We classify each
simulation’s numerical steady state into four behaviors: switching,
reverting, vacillating, or intra-well, represented by red, blue, green,
and yellow data points in Figs. 3(c)–(f), respectively. This categoriza-
tion follows the methodology established in our previous study [32].
One notable observation from Figs. 3(c)–(f) is that as the static bias
force increases, the switching behavior becomes more prominent across
all parameter spaces compared to other behaviors (see supplemental
materials [49] for more results). Furthermore, as 𝑃 (B) increases, the
minimum dynamic forcing amplitude required to switch between stable
states in both directions decreases. This implies that a higher static
bias not only makes the potential well asymmetric but also reduces the
dynamic forcing amplitude requirement, denoted as 𝐺min, which is the
minimum for the possibility of switching.

Next, we quantify the switching behavior area within the parameter
spaces of Figs. 3(c)–(f) where the parameter set (𝐺 , 𝛺) always results in
switching behavior. Fig. 4(a) illustrates a parameter space with static
bias force 𝑃 (B) = 0.160 where a rectangle indicates the area where
no behaviors other than switching are present. We quantify this area
from a 256 × 256 grid, where each set of (𝐺 , 𝛺) results in switching
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Fig. 4. Distinct switching areas: (a) shows a parameter space for 𝑃 (B) = 0.160 and
𝛾 = 0.07, outlined by a rectangle, where every combination of 𝐺 and 𝛺 results in
switching behavior. (b) illustrates the expansion of the switching behavior area as the
static bias force 𝑃 (B) increases across different parameter spaces.

behaviors. We numerically detect the largest possible rectangle in the
parameter space, excluding other behaviors. After measuring the width
and height of the rectangle across the frequency and forcing amplitude
ranges, we calculate the distinct dimensionless switching area, 𝛥𝛺×𝛥𝐺,
where no other behaviors are present. Fig. 4(b) shows that as we
increase the static bias force, the dimensionless rectangular area in
the parameter spaces increases (see supplemental materials [49] for
additional results).

In conclusion, our investigation shows the dynamic morphing ca-
pabilities of bistable buckled beams under the influence of static bias
forces and dynamic excitation. We demonstrate that applying a static
bias force expands the parameter space conducive to switching behav-
ior, thus facilitating more efficient transitions between stable states
without the onset of chaos. This enhancement of the switching behavior
region underscores the potential of static bias force as a tool for
optimizing the morphing efficiency of bistable systems.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eml.2025.102299.

In the supplemental materials, we have included a detailed deriva-
tion of the bistable Duffing equation from the nonlinear vibration
equation of the buckled beam. Furthermore, we have added additional
results of Figs. 2–4.
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I. CONTINUOUS BUCKLED BEAM EQUATION TO DISCRETE BISTABLE

DUFFING EQUATION

We consider a straight beam buckled into its first buckled mode and apply harmonic

excitation to switch its state from the first stable state to the second stable state, as shown

in Figs. 1(a) and 1(b) in the main manuscript. Furthermore, We consider the transverse

deflection of the beam at a position x and time t as Ŵ (x, t). The beam has a length L, a

uniform density ρ, a cross-sectional area A, and a flexural rigidity EI, where E is Young’s

modulus and I = bt3

12
is the moment of inertia of the beam. Here, t and b are the thickness and

the out-of-plane width of the beam, respectively (see Table I). Initially, the bistable beam is

modeled using a continuous beam vibration equation, which is then discretized into a bistable

Duffing equation. The governing differential equation for a buckled beam, originally flat and

then compressed past its critical buckling load, results in a static displacement Ŵo when the

ends are fixed. This beam is subjected to a point load harmonic excitation (Figs. 1(a) and

1(b) in the main manuscript). Equation S1 shows the Euler-Bernoulli beam equation of a

buckled beam.

EI
∂4Ŵ

∂x̂4
+ P̂cr

∂2Ŵ

∂x̂2
+ ρA

∂2Ŵ

∂t̂2
+ Ĉd∂Ŵ

∂t̂
−

EA

2L

∫ L

0

(∂Ŵ

∂x̂

)2

+ 2
∂Ŵ

∂x̂

∂Ŵo

∂x̂

 dx̂

(
∂2Ŵ

∂x̂2
+

∂2Ŵo

∂x̂2

)
= F̂ cos (Ω̂t̂).

(S1)

Equation (S1) can be nondimensionalized using the nondimensionalized parameter from the

Table II,

∂4W

∂x4
=

∂4(Ŵh)

∂(x̂L)4
=

h

L4

∂4Ŵ

∂x̂4
;

∂2W

∂x2
=

∂2(Ŵh)

∂(x̂L)2
=

h

L2

∂2Ŵ

∂x̂2
;

∂W

∂x
=

∂(Ŵh)

∂(x̂L)
=

h

L

∂Ŵ

∂x̂
;(

∂Wo

∂x

)2

=
h2

L2

(
∂Ŵo

∂x̂

)2

;

(
∂Wo

∂x

)
=

h

L

(
∂Ŵo

∂x̂

)
;

∂2Wo

∂x2
=

∂2(Ŵoh)

∂(x̂L)2
=

h

L2

∂2Ŵo

∂x̂2
;

∂W

∂t
=

h

T

∂Ŵ

∂t̂
;

∂2W

∂t2
=

∂2(Ŵh)

∂(t̂T )2
=

h

T 2

∂2Ŵ

∂t̂2
; dx = d(x̂L) = Ldx̂,

(S2)
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where Ŵo(x = L
2
) = h is the apex height or amplitude of the bistable buckled beam and

replace the above substitution in Eq. (S1) we get,

EIh

L4

∂4W

∂x4
+

P̂crh

L2

∂2W

∂x2
+

ρAh

T 2

∂2W

∂t2
+

Ĉdh

T

∂W

∂t
−

{
EAh3

2L4

∫ L

0

[(
∂W

∂x

)2

+ 2
∂W

∂x

∂Wo

∂x

]
dx

}
(
∂2W

∂x2
+

∂2Wo

∂x2

)
= F̂ cos(Ω̂Tt).

(S3)

Now divide both sides of the Eq. (S3) by, EIh
L4

∂4W

∂x4
+

P̂crL
2

EI

∂2W

∂x2
+

ρAL4

EIT 2

∂2W

∂t2
+

ĈdL4

EIT

∂W

∂t
−

{
Ah2

2I

∫ L

0

[(
∂W

∂x

)2

+ 2
∂W

∂x

∂Wo

∂x

]
dx

}
(
∂2W

∂x2
+

∂2Wo

∂x2

)
=

F̂L4

EIh
cos(Ω̂Tt),

(S4)

Next, T is defined by setting the coefficient of the inertia term equal to unity,

ρAL4

EIT 2
= 1 =⇒ T =

√
ρAL4

EI
, (S5)

T is called the time constant. Using the nondimensional substitutions from Table II and

Eq. (S5), Eq. (S4) becomes Eq. (S6).

∂4W

∂x4
+ Pcr

∂2W

∂x2
+

∂2W

∂t2
+ Cd∂W

∂t
−

{
6Q2

∫ L

0

[(
∂W

∂x

)2

+ 2
∂W

∂x

∂Wo

∂x

]
dx

}
(
∂2W

∂x2
+

∂2Wo

∂x2

)
= F cos(Ω̂Tt).

(S6)

To solve Eq. (S6), we apply the separation-of-variables method, considering a solution as

the product of a spatial function ϕi(x) and a time-dependent function qi(t). Using Galerkin’s

method, Eq. (S6) is transformed into a set of coupled ordinary differential equations (ODEs).

With n representing the degrees of freedom (DOF), the separation of variables on Eq. (S6)

leads to:

W (x, t) =
n∑

i=1

qi(t)ϕi(x). (S7)
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TABLE I. Beam Geometry and Material Properties (Dragon Skin 30)

Parameter Symbol Value

Beam length (mm) L 60

Beam width (mm) b 10

Beam thickness (mm) t 1

Buckled height (mm) h 5.22

Modulus of elasticity (MPa) E 0.74± 0.07

Density ( kg
m3 ) ρ 1082

Mode shape of the bistable buckled beam is given by,

Odd mode,

ϕi(x) =
1

2
[1− cos(Nix)] , (S8)

Ni = (i+ 1)π (S9)

Here, i = 1, 3, 5, ......

and even modes,

ϕi(x) =
1

2

[
1− 2x− cos(Nix) +

2 sin(Nix)

Ni

]
, (S10)

Ni = 2.86π, 4.92π.... (S11)

Here, i = 2, 4, 6, ...... Now plugging Eq. (S7) into the Eq. (S6) yields a coupled set of n

ODE’s for qi.

n∑
i=1

ϕi
∂2qi
∂t2

+ Cd

n∑
i=1

ϕi
∂qi
∂t

+ Pcr

n∑
i=1

∂2ϕi

∂x2
qi +

n∑
i=1

∂4ϕi

∂x4
qi

−

{
6Q2

∫ L

0

[(
∂ϕi

∂x

)2

q2i + 2

(
∂ϕi

∂x

)(
dϕo

dx

)
qi

]
dx

}(
∂2ϕi

∂x2
qi +

d2ϕo

dx2

)
= F cos (Ω̂T t̂).

(S12)

As the buckling mode shapes are orthogonal, the linear terms in the Eq. (S12) can be decou-

pled by multiplying through ϕj and integrating over the length of the beam. This provides
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TABLE II. Nondimentional substitution

Parameter Substitutions

x− direction position x = x̂
L

z− direction position w = ŵ
h

Time t = t̂
T

Damping Coefficient Cd = ĈdL2
√
ρAEI

Axial Load Pcr = P̂cr
L2

EI

Force F = F̂L3

EIh

Geometric parameter Q =
(
h
t

)
Time constant (s) T =

√
ρAL4

EI

a set of ordinary differential equations,

Miq̈i + CdMiq̇i + PcrEiqi +Niqi − 6Q2
[
(Diq

2
i + 2Giqi)

]
(Eiqi +Hi) = FiF cos (Ω̂Tt),

(S13)

where

Mi =

∫ 1

0

ϕjϕi dx; Ni =

∫ 1

0

ϕj
d4ϕi

dx4
dx; Di =

∫ 1

0

(
dϕi

dx

)2

dx;

Ei =

∫ 1

0

ϕj
d2ϕi

dx2
dx; Fi =

∫ 1

0

ϕj dx; Gi =

∫ 1

0

(
dϕi

dx

)(
dϕo

dx

)
dx; Hi =

∫ 1

0

ϕj
d2ϕo

dx2
dx.

(S14)

Mode shapes ϕi and ϕj are orthogonal to each other, a key concept in structural dynamics.

The orthonormality condition for these mode shapes is defined as follows:

∫ 1

0

ϕiϕj dx = δij, (S15)

The Kronecker delta, δij, signifies the orthonormality and is defined as:

δij =

1, if i = j

0, if i ̸= j,
(S16)

This orthonormality condition ensures that the integral of the product of two different mode

shapes, ϕi and ϕj, over their domain is zero when i ̸= j, and is equal to 1 when i = j.
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If we consider the first buckled mode approximation of Eq. (S8),

ϕ1(x) =
1

2
[1− cos(2πx)] , (S17)

Therefore, first Buckling mode parameters,

M1 =

∫ 1

0

ϕ1ϕ1 = 0.3750; N1 =

∫ 1

0

ϕ1
d4ϕ1

dx4
= 194.8182;

D1 =

∫ 1

0

(
dϕ1

dx

)2

= 4.9348; E1 =

∫ 1

0

ϕ1
d2ϕ1

dx2
= −4.9348; F1 =

∫ 1

0

ϕ1 = 0.500;

G1 =

∫ 1

0

(
dϕ1

dx

)(
dϕo

dx

)
= 4.9348; H1 =

∫ 1

0

ϕ1
d2ϕo

dx2
= −4.9348,

(S18)

Therefore, Eq. (S13) becomes,

M1q̈1 + CdM1q̇1 + PcrE1q1 +N1q1 − 6Q2
[
(D1q

2
1 + 2G1q1)

]
(E1q1 +H1)

= F1F cos (Ω̂Tt),
(S19)

M1q̈1 + CdM1q̇1 + PcrE1q1 +N1q1 − 6Q2
[
D1E1q

3
1 +D1H1q

2
1 + 2E1G1q

2
1 + 2G1H1q1

]
= F1F cos (Ω̂Tt),

(S20)

As D1 = G1, and E1 = H1, Eq. (S20) simplifies,

M1q̈1 + CdM1q̇1 + PcrE1q1 +N1q1 − 6Q2
[
D1E1q

3
1 +D1E1q

2
1 + 2D1E1q

2
1 + 2D1E1q1

]
= F1F cos (Ω̂Tt),

(S21)

M1q̈1 + CdM1q̇1 + PcrE1q1 +N1q1 − 6Q2
[
D1E1q

3
1 + 3D1E1q

2
1 + 2D1E1q1

]
= F1F cos (Ω̂Tt),

(S22)

As (N1 + PcrE1) = (194.8182− 194.8181) ≈ 0,

M1q̈1 + CdM1q̇1 − 6Q2
[
D1E1q

3
1 + 3D1E1q

2
1 + 2D1E1q1

]
= F1F cos (Ω̂Tt), (S23)

and let, K = −6Q2D1E1 with D1 = 4.9348 and E1 = −4.9348 and Q = h/t, so the final

form of the Eq. (S20),

M1q̈1 + CdM1q̇1 +
[
Kq31 + 3Kq21 + 2Kq1

]
= F1F cos (Ω̂Tt). (S24)

We shift the equilibrium to zero for the new variable u using the transformation q1 = u− 1.

This simplifies the equations, helps linearize the system, and makes analysis and computa-

tions easier. It aligns with standard approximation methods, enhancing both analytical and

numerical analysis. For the given equation, we apply this transformation as follows:
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u = q1 + 1 =⇒ q1 = u− 1, (S25)

Using the above equation Eq. (S24) becomes,

M1ü+ CdM1u̇−Ku+Ku3 = F1F cos (Ω̂Tt), (S26)

ü+ Cdu̇− K

M1

u1 +
K

M1

u3 = F1

(
F

M1

)
cos (Ω̂Tt), (S27)

ü+ Cdu̇− ω2
nonu+ ω2

nonu
3 = F1

(
F

M1

)
cos (Ω̂Tt). (S28)

ωnon is the first natural frequency of the first mode at the linear limit,

ω2
non =

(
K

M1

)
= 4π4Q2. (S29)

We scale the time to transform Eq. (S28) into the standard form of a bistable Duffing

equation by introducing the scaled time variable τ = ωnont, where ωnon is the first natural

frequency of the system at the linear limit. We can write Eq. (S28) like this,

d2u

dt2
+ Cddu

dt
− ω2

nonu+ ω2
nonu

3 = F1

(
F

M1

)
cos (Ω̂Tt). (S30)

Let g = F1

(
F
M1

)
,

d2u

dt2
+ Cddu

dt
− ω2

nonu+ ω2
nonu

3 = g cos (Ω̂Tt), (S31)

As, τ = ωnont,

ω2
non

d2u

dτ 2
+ ωnonC

ddu

dτ
− ω2

nonu+ ω2
nonu

3 = g cos

(
Ω̂T

ωnon

τ

)
, (S32)

dividing both sides of the above equation by ω2
non

d2u

dτ 2
+

Cd

ωnon

du

dτ
− u+ u3 =

g

ω2
non

cos

(
Ω̂T

ωnon

τ

)
. (S33)
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We assume the nondimensional excitation frequency as ω = Ω̂T
ωnon

. Let G = g
ω2
non

and γ = Cd

ωnon
.

With these substitutions, Eq. (S33) becomes:

ü+ γu̇− u+ u3 = G cos (ωτ), (S34)

where G is the point modal force amplitude (projected force with respect to the first mode

shape) considering time scaling,

G = F1

(
F

4π4Q2 ·M1

)
,

with F = F̂ · L3

EIh
, F1 =

∫ 1

0

ϕ1 = 0.500, Q = h/t,

and M1 =

∫ 1

0

ϕ1ϕ1 = 0.3750.

(S35)

The nondimensional excitation frequency ω (considering time scaling and the time constant

T ) is given by:

ω = Ω̂ ·
√
4π4Q2 ·

√
EI

ρAL4
. (S36)
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II. IMPACT OF STATIC BIAS FORCE P(B) ON THE SYMMETRIC BISTABLE

SYSTEM

FIG. S1. Tunability of the bistable behavior: (a) Evolution of the force-displacement curve, demon-

strating linear shifts along the force axis. (b) Linear translation of the energy landscape under

various applied static bias forces. The black arrows indicate the direction of translation.
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III. FORCING AMPLITUDE-FREQUENCY PARAMETER SPACE FOR A

BUCKLED BEAM UNDER COMBINED STATIC BIAS FORCE AND DYNAMIC

EXCITATION

FIG. S2. Forcing amplitude-frequency parameter space for a bistable buckled beam with a damping

ratio of γ = 0.07 across static bias forces from P (B) = 0.00 to 0.100 in increments of 0.02.
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FIG. S3. Forcing amplitude-frequency parameter space for a bistable buckled beam with a damping

ratio of γ = 0.07 across static bias forces from P (B) = 0.120 to 0.200 in increments of 0.02.

FIG. S4. Forcing amplitude-frequency parameter space for a bistable buckled beam with a damping

ratio of γ = 0.07 across static bias forces from P (B) = 0.240 to 0.300 in increments of 0.02.
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IV. FORCING AMPLITUDE-FREQUENCY PARAMETER SPACE WITH

DISTINCT SWITCHING AREA

FIG. S5. Forcing amplitude-frequency parameter space for a bistable buckled beam with a damping

ratio of γ = 0.07 across static bias forces from P (B) = 0.02 to 0.120 in increments of 0.02. A distinct

switching area is marked by a rectangle indicating where every combination of G and Ω results in

switching behavior.



14

FIG. S6. Forcing amplitude-frequency parameter space for a bistable buckled beam with a damping

ratio of γ = 0.07 across static bias forces from P (B) = 0.140 to 0.240 in increments of 0.02. A

distinct switching area is marked by a rectangle indicating where every combination of G and Ω

results in switching behavior.

FIG. S7. Forcing amplitude-frequency parameter space for a bistable buckled beam with a damping

ratio of γ = 0.07 across static bias forces from P (B) = 0.240 to 0.300 in increments of 0.02. A

distinct switching area is marked by a rectangle indicating where every combination of G and Ω

results in switching behavior.
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V. RELATIONSHIP BETWEEN STATIC BIAS FORCE AND THE MINIMUM

FORCING AMPLITUDE Gmin IN THE PARAMETER SPACE, AND ITS

RELATIONSHIP WITH THE TOTAL ACTUATION FORCE

As shown in Fig. S8(a), P (B) and Gmin exhibit a linear relationship, where Gmin decreases

linearly as P (B) increases. Consequently, this linearity ensures that the sum of P (B) +

Gmin also follows a linear trend as we change P (B). Notably, the value of P (B) + Gmin

will not exceed 0.38, because the symmetric bistable system under quasistatic loading, a

dimensionless force of 0.38 is required for switching between stable states. Although the

“total actuation force” increases with P (B), and Fig. S8(b) may give the impression that

the static bias P (B) does not offer any advantage, it is important to note, as shown in

Fig. 4(b) of the main text, that a larger static P (B) results in a larger non-fractal region

for switching behavior. This reduction in uncertainty could be significant for experimental

studies and the design of future magnetically responsive morphing metamaterials.

FIG. S8. (a) Linear relationship between the minimum dynamic forcing amplitude (Gmin) and

the applied static bias force (P (B). Gmin represents the minimum forcing amplitude required to

switch between stable states in the parameter space shown in Figs. S2 to S4. (b) Total actuation

force (P (B) + Gmin) as a function of P (B), illustrating a linear trend. Notably, the value of

P (B)+Gmin does not exceed 0.38, because the symmetric bistable system under quasistatic loading,

a dimensionless force of 0.38 is required for switching between stable states.
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VI. BIDIRECTIONAL SWITCHING BEHAVIOR BY REVERSING THE

STATIC BIAS FORCE

We also conduct time-domain simulations to investigate bidirectional switching by re-

versing the direction of the static bias force. For P (B) = 0.100, the system switches

from the stable state u−1 = −1 to the stable state u+1 = +1 under the parameters

(G,Ω) = (0.125, 1.209412) and a damping ratio of γ = 0.07, as shown in Fig. 3(a). By

reversing the static bias force to P (B) = −0.100 while keeping the same parameters of the

forcing amplitude, frequency, and damping ratio, the system achieves the reverse transition

from the stable state u+1 = +1 to the stable state u−1 = −1, as shown in Fig. S9. This

confirms that the direction of the static bias force enables bidirectional switching between

the two stable states of a bistable buckled beam.

FIG. S9. Bidirectional switching of the bistable buckled beam by reversing the static bias force

direction. For P (B) = 0.100, the system transitions from the u−1 = −1 stable state to the u+1 = +1

stable state under the parameters (G,Ω) = (0.125, 1.209412) and γ = 0.07, as shown in Fig. 3(a)

of the main manuscript. Reversing the static bias force to P (B) = −0.100 enables the reverse

transition from u+1 = +1 to u−1 = −1, demonstrating the bidirectional switching behavior of the

system.
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